
1

IPv6 Ephemeral Addresses
<draft-kitamura-ipv6-ephemeral-address-00.txt>

Harmless IPv6 Address State Extension
(Uncertain State)

<draft-kitamura-ipv6-uncertain-address-state-00.txt>

Hiroshi KITAMURA
NEC Corporation

kitamura@da.jp.nec.com

2

Prologue
• We propose two new ideas:

– Ephemeral Addresses
– Uncertain Address State

• They are small modification to the current specs.
• They are harmless and

can coexist with current implementations.
But

We hope they bring much benefits to us.

3

IPv6 Ephemeral Addresses
<draft-kitamura-ipv6-ephemeral-address-00.txt>

Hiroshi KITAMURA
NEC Corporation

kitamura@da.jp.nec.com

4

Introduction of
IPv6 Ephemeral Addresses

• “Ephemeral Addresses” are designed to be used as
clients' source addresses of TCP / UDP sessions.

• “Ephemeral Addresses” are achieved by deriving
from the existing “Ephemeral Ports” specifications.

• In other words:
“Ephemeral Addresses” are achieved by
naturally upgrading “Ephemeral Ports” concept

from the port space to the address space.

5

Basic Design of
Ephemeral Addresses

Server

Current (Ephemeral PortPort) Proposed (Ephemeral AddressEphemeral Address)

Client Server Client

Application Layer
Transport Layer
Network Layer
Phy. / D.L. Layer

Application (Reduced) Port
Port Ephemeral Port
Address Ephemeral AddressEphemeral Address

Upgrade

6

How Ephemeral Addresses Work
“Ephemeral Addresses” can contribute to various types of

security enhancements (e.g., privacy protections etc.)
Definitions of “Ephemeral Addresses” are

almost same as definitions of “Ephemeral Ports”.

Ephemeral Ports Ephemeral Addresses

Where used? clients' source ports
on the transport layer

clients' source addresses
on the network layer

When
generated /
assigned ?

when sessions are
initiated to communicate

with server nodes

when sessions are
initiated to communicate

with server nodes

When
disposed ?

when the sessions
are closed

when the sessions
are closed

7

Why we need Ephemeral Addresses?

Because we have to enhance IP comm. security.
• We are sticking on

“Legacy Concept of Address Usage”
(node utilizes only limited number of addresses).

• Wide Address Space can contribute to security enhancements
– dynamically changing addresses
– short life time addresses
– mass-consuming addresses
– etc.

• “Ephemeral Address” is not simple upgrading
from port space to address space.

• “Ephemeral Address” is designed for security enhancements.
Let’s CHANGE Legacy Concept of Address Usage.

YES, we can. (say together!)

8

Comparison of “Ephemeral Addresses”
and “Temporary Addresses” 1/2

In RFC4941, “Temporary Addresses” are defined
in order to enhance the privacy protection.

“Temporary Addresses” and “Ephemeral Addresses”
have the following similar functions.

1. They are used only for client nodes’ source addresses.
2. They have lifetime, and theirs usable period is limited.
3. They can enhance the privacy protection.

. Goal is NOT to update “Temporary Address” spec.
Goal is to CHANGE Legacy Concept of Address UsageLegacy Concept of Address Usage

for security enhancements.

9

Comparison of “Ephemeral Addresses”
and “Temporary Addresses” 2/2

Temporary Address Ephemeral Address

Used for Multiple Sessions Single Session

Address Lifetime Rather long Short (during the session)

Create / Dispose
Timing Vague Crystal Clear

Re-use Policy
Re-used
(weak from

security viewpoint)

One Shot / Disposal
Never re-used

(consume many addresses)

Design Half-backed
Rather complex

Thoroughgoing Design
Very Simple

10

Concern Issues on Ephemeral Addresses

Q1: Is (64bit) Interface ID space really wide enough
for Ephemeral Address Usages ?

A1: Yes. No Problems!
(see the following quantitative analysis pages)

Q2: Which “Address Creation Rule” do we use?
A2: Out of scope for this I-D.

Let’s start from “at random creation” rule.

Q3: How do we avoid DAD time consuming problem?
A3: Introduce new address state (“Uncertain” state)

(see next presentation on this issue)

11

Quantitative Analysis:
Let’s calculate “Meet Again” Probability

for the same Ephemeral Address
Condition:

Ephemeral Address Creation/Selection Rule is:
“At Random” from 64bit Interface ID space.

Probability Formula (Birthday Paradox):
“n” times probability:
= 1 - (264-1)/264 * (264-2)/264 * … * (264-n)/264

Estimation: Number of consumed addresses
per (year, day, hour, min, sec)

is much enough (sufficient estimation)

 / year / day / hour / min / sec

31,536,000 86,400 3,600 60 1.0

100,000,000 273,973 11,416 190 3.2

“100M addr. / year”

12

“Meet Again” Probability Results
for the same Ephemeral Address

(274k addr./day : 3.2 addr./sec)
10years: 2.8% 20years: 10.3%
25%: 32.6 years 50%: 50.6 years 75%: 71.6 years

Meet Again Probability for 64 bit Space (Birthday Paradox)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100 110 120
(Unit: 100 M)

(year)n Times or Addresses

P
ro

b
a
b
ili
ty

25%
32.6 year

50%
50.6 year

Consume 100M addr. / year

13

Implementations

• “Ephemeral Address” specification
has been implemented.

• Basic functionaries have been verified.
OS: FreeBSD6.2R (32bit / 64bit)
CPU: i386 / amd64

Since the spec. is simple,
it is easy to implement “Ephemeral Address.”

(If there are people who would like to implement
“Ephemeral Address” on Linux or other OSs,
please let us know.)

14

Characteristics of Ephemeral Addresses

• No need to modify exiting applications
(achieved by the kernel side modification only)

• Only nodes who implement
“Ephemeral Address” spec. get benefits.

• It may become difficult to administer clients’ addresses
– This is security enhancement technology.
– New features (e.g., pseudonymity, unlinkability) may be

brought, if you prepare good address creation rules.

• No problems are found.

15

Next Step ?

• Update I-D

• Move to WG I-D ?

16

Harmless IPv6 Address State Extension
(Uncertain State)

<draft-kitamura-ipv6-uncertain-address-state-00.txt>

Hiroshi KITAMURA
NEC Corporation

kitamura@da.jp.nec.com

17

Introduction and Goals
Propose a new IPv6 address state (“Uncertain”)

as an extension of IPv6 address state specification.

Two Goals:
1.To achieve “Address Reservation” function.
2.To avoid a DAD time consuming problem

for dynamically created addresses
(e.g., Ephemeral Addresses, CoA of Mobile IPv6)

“Uncertain” address state is inserted
between “Tentative” and “Valid” address states
(“Tentative” -> “Uncertain” -> “Valid”)

18

Design Policy:
How to Avoid DAD time consumption

We do NOT choose “Optimistic” approach.

• Do DAD operations for All addresses
• But, DAD operations executing timing is changed

– Address collision never happens
– We don't have to worry about address collision cases.
– No bad effects

to the existing implementations are caused.

19

Tentative
(DAD)

Invalid

Valid

Preferred

Deprecated Deprecated

Invalid

Valid

Preferred

Tentative
(DAD)

Uncertain

Introduced

Preferred
Pre-DAD Operations

Change
State

Basic Design

20

How to implement “Uncertain State”
Focus on two types of NS messages

These two messages are distinguishable.

NS messages for
DAD queries

NS messages for
L2 Address queries

Source Address unspecified address
(= ::)

not unspecified address
(!= ::).

There are two types of NS messages

21

Implementation Design for
“Uncertain State” Operations

Very simple Design:
Only NOT reply to NS messages for L2 address queries

State NS NS messages for
DAD queries

NS messages for
L2 Address queries

Uncertain State Reply NOT Reply

Valid State Reply Reply

Function view

Reserve / Own
an address exclusively:

The other nodes can
NOT obtain the address

NOT Fill / Fill
Neighbor Cache of

the other nodes

22

“Uncertain State”, “Address Pool”,
and Reserved Addresses

To implement “Uncertain State” is
almost same to implement “Address Pool”.

Reserved Addresses:
– They are stored in the Address Pool.
– Their address state is Uncertain address state.

When it becomes really necessary
for a node to utilize a reserved address:

– An address is taken from the Address Pool
– Its address state is changed into “Valid” address state

without causing time consuming DAD operations.

23

Userland

Kernel

Push Pop

Set

Address Pool

Address Manager
(or Manual)

Process (socket)

PCB

NSNA

Address Pool and Address Manager

Address Pool is
located in the kernel
(like neighbor cache,
routing table)

Uncertain Operations
are implemented
in the kernel

Push: Save address(es) to the Address Pool
Pop: Draw address(es) from the Address Pool
Set: Set address to Process (socket)

[Actually, Set address info. to PCB]

Set

24

Network Environment (self pool)
and Uncertain Operations

Node A: Main player (address consumer)
node who reserves “addr. X” and has “address pool”

Node B: [Simple neighbor node]
Node C: Node who wants to set/obtain “addr. X” late

(issues NS for DAD query, and receives NA)
Node D: Node who wants to talk with node who owns “addr. X”

(issues NS for L2 Address query, and NOT NOT receives NA)

Node A

pool NC

Node B

NC

Node C

NC

Node D

NC

NS for DAD query

NS for L2 Address query
NOT receive NA

Addr.X
receive NA

25

Node A:
reserve “addr. X”
and has “pool”

Node B:

DAD Query
NS (src = ::)

Node C:
(issue NS for DAD)

Tentative

Uncertain

Node D:
(issue NS for L2 addr)

DAD Query
NS (src = ::)

Reply NA to show duplication

Push to Pool

No Reply NA

Overview Sequences 1/2

26

Valid

L2 Address Query for Addr.X
NS (src != ::)

No Reply NA to tell L2 Address

Pop and Set
Address from Pool DAD Query

NS (src = ::)

Important Point

L2 Address Query for Addr.X
NS (src != ::)

Reply NA to tell L2 Address

Uncertain

Overview Sequences 2/2
Node A:
reserve “addr. X”
and has “pool”

Node B: Node C:
(issue NS for DAD)

Node D:
(issue NS for L2 addr)

27

Address Pool (Address Reserver)
and Address Consumer 1/2

Two types are possible
• Self Pool Type:

Address Reserver = Address Consumer
(Simple: described above)

• Shared Pool Type:
Address Reserver != Address Consumer
(for Advanced Cases: to be used in future)

28

Tentative
(DAD)

Invalid

Valid

Uncertain
(in pool)

Generate

Deprecated

Preferred

Tentative
(DAD)

Invalid

Valid

Preferred

Generate

Deprecated

Preferred

Shared Pool type

Address Pool and Address Consumer 2/2

Preferred Uncertain
(in pool)

Change
State

Change
State

Self Pool type

Address
Consumer

Node

info. transfer

29

Network Environment (shared pool)
and Uncertain Operations

Node A: Main player (address consumer)
node who uses “addr. X” and may have “address pool”

Node B: Pool Server who has “shared address pool”
Node C: Node who wants to set/obtain “addr. X” late

(issues NS for DAD query, and receives NA)
Node D: Node who wants to talk with node who owns “addr. X”

(issues NS for L2 Address query, and NOT NOT receives NA)

Node A

poolNC

Node B

NC

Node C

NC

Node D

NC

NS for DAD query

NS for L2 Address query

Addr.X

pool

info. transfer

30

Implementations

• “Uncertain Address State” specification
has been implemented.

• Basic functionaries have been verified.
OS: FreeBSD6.2R (32bit / 64bit)
CPU: i386 / amd64

Since the spec. is simple,
it is easy to implement “Uncertain Address State.”

(If there are people who would like to implement
“Uncertain Address State” on Linux or other OSs,
please let us know.)

31

Uncertain State is Harmless Extension

• Uncertain address state is harmless extension
• It can coexist with current implementations

without causing any problems
Because:
–It is realized by NOT replying to

NS messages for L2 address query.
–NS messages are probing-type messages,

they not to require mandatory NA replies.

32

Harmless Feature Verification and
Characteristics of Uncertain Address State

• “Harmless” feature have been verified
with following rOSs.

– FreeBSD 6.2 normal kernel
– Linux 2.6.27-7 (Ubuntu 8.10)
– MacOS X 10.3.9
– Windows XP SP3, Windows Vista

• Only nodes who implement
“Uncertain Address State” spec. get benefits.

• No problems are found

33

Next Step ?

• Update I-D

• Move to WG I-D ?

	IPv6 Ephemeral Addresses�<draft-kitamura-ipv6-ephemeral-address-00.txt>�� Harmless IPv6 Address State Extension �(Uncertain St
	Prologue
	IPv6 Ephemeral Addresses�<draft-kitamura-ipv6-ephemeral-address-00.txt>
	Introduction of �IPv6 Ephemeral Addresses
	Basic Design of �Ephemeral Addresses
	How Ephemeral Addresses Work
	Why we need Ephemeral Addresses?
	Comparison of “Ephemeral Addresses” �and “Temporary Addresses” 1/2
	Comparison of “Ephemeral Addresses” �and “Temporary Addresses” 2/2
	Concern Issues on Ephemeral Addresses
	Quantitative Analysis: �Let’s calculate “Meet Again” Probability �for the same Ephemeral Address
	“Meet Again” Probability Results �for the same Ephemeral Address
	Implementations
	Characteristics of Ephemeral Addresses
	Next Step ?
	Harmless IPv6 Address State Extension (Uncertain State)�<draft-kitamura-ipv6-uncertain-address-state-00.txt>
	Introduction and Goals
	Design Policy:�How to Avoid DAD time consumption
	Basic Design
	How to implement “Uncertain State” �Focus on two types of NS messages
	Implementation Design for �“Uncertain State” Operations
	“Uncertain State”, “Address Pool”,�and Reserved Addresses
	Address Pool and Address Manager
	Network Environment (self pool)�and Uncertain Operations
	Overview Sequences 1/2
	Overview Sequences 2/2
	Address Pool (Address Reserver) �and Address Consumer 1/2
	Address Pool and Address Consumer 2/2
	Network Environment (shared pool)�and Uncertain Operations
	Implementations
	Uncertain State is Harmless Extension
	Harmless Feature Verification and �Characteristics of Uncertain Address State
	Next Step ?

