
Use of the IPv6 Flow
Label as a TCP Nonce

Steven Blake
sblake@extremenetworks.com

IETF 73
November 2008

2

The Problem
 TCP (and other transports) are vulnerable to blind

spoofed packet injection attacks from off-path hosts.
 Attackers can spoof SYN, ACK, DATA, and RST segments,

resulting in connection reset, thruput reduction, or data
corruption.

 Attackers can also spoof ICMP error messages
 Attacker has to be able to correctly guess

<IPSA, SRCPORT, IPDA, DSTPORT>, plus an in-
receive window sequence number.

 Vulnerability grows quadratically with attacker's
access link speed.

 Long-running TCP sessions are most vulnerable (e.g.,
BGP).

3

Mitigations (1)
 RFC 4953 surveys the mitigation options.
 Network Ingress Filtering [RFC 2827, RFC 3704]

 Not (yet) universally deployed.
 Doesn't protect against ICMP spoofing.
 With large BOTNETs, more likely that an attack can be

launched from a network close to the victim.
 Cryptographic Authentication

 IPsec AH
 TCP-MD5 option
 TCP Authentication Option
 Also protects against (some) on-path attacks.
 Computationally expensive.
 Key management overhead.
 SHOULD be used in high-threat environments.

4

Mitigations (2)

 Obfuscation techniques:
 Source port randomization:

draft-ietf-tsvwg-port-randomization
 Initial sequence number randomization:

draft-ietf-tcpm-tcpsecure
 Randomization increases the work factor for an attacker to

successfully spoof a valid TCP packet.
 Both schemes in combination introduce ~ 32 bits of

entropy.
 A host on a high-speed link may be able to spoof a

connection in less than an hour.

5

IPv6 Flow Label

 IPv6 introduced the concept of an interworking-layer
flow.
 FlowID: 20 bit field in IPv6 header
 RFC 1883 defined a flow as a sequence of packets from a

source to a particular (set of) destination(s), which require
special handling by routers.

 Flows are identified by <IPSA, FlowID>, where FlowID is
non-zero.

 RFC 3697 redefined flow identity as <IPSA, IPDA, FlowID>.
 We want to utilize the FlowID as a per-connection nonce, to

increase the work factor of spoofing attacks.
• Randomization of FlowID, SRCPORT, and ISN increases

entropy to > 51 bits.

Warning!

Layering
Violation

6

7

Existing Flow Label Rules

 Source MUST keep FlowID constant for the duration
of a flow.

 FlowID MUST remain unchanged end-to-end.
 Source SHOULD assign each transport connection or

application datastream to a unique flow.
 Source SHOULD select an unused FlowID if not

explicitly selected by an application.
 FlowIDs MUST be unique at a source host at any

instant in time.
 Source MUST NOT reuse the same FlowID to the

same destination for a quarantine period after flow
termination (>= 120 seconds).

8

Flow Label Nonce Use
 Each host assigns each transport connection to a

flow.
 Host selects an outgoing FlowID per-connection.
 Host records the incoming FlowID from the peer and

checks it against every received packet in the
connection.

 Host silently discards packets with invalid FlowIDs.
 Excessive FlowID errors SHOULD be logged.
 Scheme is incrementally deployable:

• If a destination does not check FlowID, nothing broken
(but attack resistance not improved).

• If source does not support this scheme, FlowID = 0.
Destination check will not fail.

 MUST NOT rely on this mechanism in high-threat
environments.

9

Additional Flow Label Rules

 Host MUST assign each transport connection to a
new flow.

 Host MUST be able to select unused FlowIDs when
the application does not request a specific value.

 FlowID MUST be practically unguessable (e.g.,
selected by a RFC 4086-compliant RNG).

 Host MUST clean-up flow state when cleaning up
transport state.

 Quarantine period must be no less than the duration
where transport state may linger (e.g., TIME_WAIT
state).

10

TCP Operation (1)
 Client TCP stack selects OUTGOING_FLOW_ID at

connection creation.
• Compute at same time as SRCPORT and ISN.
• Save OUTGOING_FLOW_ID in connection TCB.

 Client sends SYN with its OUTGOING_FLOW_ID.
 Server records SYN packet's FlowID as

INCOMING_FLOW_ID in connection TCB (ignoring SYN
cache/cookie case here).

 Server selects OUTGOING_FLOW_ID (same procedure
as client).
• Value can (but does not have to) equal

INCOMING_FLOW_ID.
 Server sends SYN-ACK with its OUTGOING_FLOW_ID.
 Client records SYN_ACK packet's FlowID as

INCOMING_FLOW_ID in connection TCB.

11

TCP Operation (2)

 Both ends always send packets with their
OUTGOING_FLOW_ID.

 Both ends always check received packet's
INCOMING_FLOW_ID.

 If the INCOMING_FLOW_ID check fails, silently discard
the packet.

 When the connection closes, FlowID cannot be
reused to the same destination for MAX(2 x MSL, 120
sec).

12

Applicability to UDP
 Also useful for UDP, since it only has source port

randomization as an obfuscation technique.
 Ex/ use FlowID as nonce in DNS queries to protect

against DNS cache poisoning attacks.
• DNS server sends the reply with the same FlowID as used

in the query.
• Client verifies the received FlowID.

 Text in draft for UDP-Lite is probably wrong: should
use FlowID as with UDP.

 Issues:
 UDP/IP stack does not have the equivalent of a TCP

connection TCB (except for connected sockets).
 Ergo, setting/checking of FlowID needs to happen in the

application (above the socket API).
 No standard sockets API for setting/retrieving FlowID.

13

Further Work

 Examine applicability to SCTP, DCCP, and RTP (over
UDP or DCCP).

 Prototype in Linux.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

