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Agenda

• Should you use XML?
• Should you invent a new XML language?
• If you’re inventing a new XML language, how do you 

maximize your chances of success?



Should You Use XML?  Other options:

• Hardwired binary
• ASN.1
• Plain text 
• JSON
• XML



Hardwired Binary: Issues

• Compact.
• (Potentially) high-performance parsing.
• Architecture-dependence.
• Severe debugging pain.

Example: IPV? packet headers



Use Hardwired Binary If:

• You’re way down the protocol stack.
• But even then, be nervous.



ASN.1: Issues

• Compact.
• IETF tradition.
• Lousy tools.
• Debugging hell.
• No community outside the IETF & ITU.
• Only metadata is data type.

Example: SNMP



Use ASN.1 If:

• You have to talk to other IETF stuff that’s locked in.



Plain Text: Issues

• The simplest possible option is often the best.
• Pretty efficient.
• Fits well with server-side Internet (Unix) culture.
• Watch out for I18n.
• Watch out for extensibility.

Example: HTTP



Use Plain Text If:

• ... you possibly can.



JSON: Example vs. XML 
{"menu": {
  "id": "file",
  "value": "File",
  "popup": {
    "menuitem": [
      {"value": "New", "onclick": "CreateNewDoc()"},
      {"value": "Open", "onclick": "OpenDoc()"},
      {"value": "Close", "onclick": "CloseDoc()"}
    ]
  }
}}

<menu id="file" value="File">
  <popup>
    <menuitem value="New" onclick="CreateNewDoc()" />
    <menuitem value="Open" onclick="OpenDoc()" />
    <menuitem value="Close" onclick="CloseDoc()" />
  </popup>
</menu>



JSON: Issues

• Superb browser integration.
• Knows about lists, tuples, hashes.
• Maps directly to programming-language structures.
• Hard-wired to UTF-8 (in theory).
• Awkward for deeply-nested or “document”-style 

structures.
• Watch out for extensibility.
• Browser security issues.

Example: Google Maps mashups



Use JSON If:

• You’re shipping structs and tuples around from 
program to program.

• You expect to implement client software in-browser.
• The expected lifetime of the data is short.
• It isn’t text-heavy.



XML: Issues

• Tons of excellent open-source tools.
• Programmers love XPath.
• Decent extensibility.
• I18n is nailed.
• Handles “document” structures well.
• Verbose & ugly.
• Doesn’t map naturally to programming-language 

structures.
• DOM API is programmer-hostile.



Use XML If:

• Your data is document-flavored.
• You’re worried about i18n.
• You’re worried about extensibility.
• You’re worried about reusability.



So, you’re going to 
use XML...



Inventing New XML Languages:

• Time-consuming.
• Bureaucratic.
• Difficult.
• Unpleasant.
• Includes complex software development as a sub-

task.
• Usually fails.



Inventing New XML Languages:

• Time-consuming.
• Bureaucratic.
• Difficult.
• Unpleasant.
• Includes complex software development as a sub-

task.
• Usually fails.

... so try not to!



Some Good XML Languages

• XHTML
• DocBook
• ODF
• Atom
• XMPP
• UBL
• RDF



So, you’re making 
your own 

language...





♥ ♥ ♥ ♥ ♥

♥ ♥ ♥ ♥ ♥



Design Issue: Semantics

• What does “Age” mean?
• What does “Version” mean?
• What does “Person” mean?
• What does “Update” mean?
• What does “Creator” mean?



Design Issue: Model vs. Syntax

“What matters is getting 
the data model right.  

The syntax is ephemeral.”

“The bits on the 
wire are the only 

reality.”



Design Issue: Minimalism vs. Completeness

“Let’s solve the 
whole problem.”

“Minimum 
progress required 
to declare victory.”



Design Issue: Specification Tools

• Human-readable prose.
• Examples.
• Validator.
• Schema.



But, first: Know Your Audience

Why specs matter
Most developers are morons, and the rest are assholes. I 
have at various times counted myself in both groups, so I can 
say this with the utmost confidence.

-Mark Pilgrim: http://diveintomark.org/archives/2004/08/16/specs



Design Issue: Specification Tools

• Human-readable prose.
• Examples.
• Validator.
• Schema.



Design Issue: Specification Tools

• Human-readable prose.
• Examples.
• Validator.
• Schema.

Most important

Very important

Nice to have



XML Schema Language Options

• DTD
• XSD (W3C XML Schemas)
• RelaxNG 
• Schematron



Document Type Definitions (DTDs)

• Constrain only what elements/attributes can appear, 
and where.

• Don’t say much about content.
• Allow the definition use of “Entities”, macros of zero 

arguments.  Don’t use them!
• Past their sell-by date.



W3C XML Schemas (XSD)

• Hard to understand, hard to implement, hard to 
interoperate.

• No underlying formalism.
• Limited in the set of markup idioms they can define.
• Includes (in “Part 2”) a usable set of primitive data 

types: Integers, floats, dates, URIs, and so on.
• One of the reasons why the SOA/WS-* project is 

sinking.



RelaxNG

• Based on the hedge-automaton formalism.
• Written in XML, or a non-XML Compact Syntax.
• Good human-readability.
• Can specify a very wide range of markup idioms.
• Can use XSD Part 2 base datatypes.
• Validators only available in Java and C.
• For a good example, see RFC4287.
• ISO 19757-2.



Schematron

• Based on XPath.
• Assertions with associated error/success messages.
• Excellent for checking for specific error conditions or 

anomalies.
• Not really a language-specification tool.
• Several implementations.
• ISO 19757-3.



XML Extensibility: Three Options

• No changes.
• Must-Understand policy (e.g. as in SOAP).
• Must-Ignore policy (e.g. as in Atom).



XML Internationalization

• “An XML document knows what encoding it’s in.”      
-Larry Wall

• In an ideal world, everything would be in UTF-8.
• In the real world, people don’t understand this stuff 

and probably shouldn’t have to.
• XML makes this survivable in many circumstances... 

with most tools, they can suck up their Shift-JIS or 
Big5 or whatever and it’ll quite possibly Just Work.



XML Security and Signatures

• Shouldn’t these two have the same signature?
• XML Canonicalization is the solution.
• Unfortunately, it’s also a problem.
• XML DigSig says how to apply a signature to c14n-

ized XML.
• Or, you could just sign the bag-o’-bits.

<a b="1" c="1"/> <a
 c='1'
 b='1'></a>



The Semantic Web

• The RDF view: Everything’s a graph of 3-tuple 
assertions: Resource/Property/Value.

• R, P, and V can each be a URI.  Value can be a URI 
or a literal.

• Assertions can be resources.
• The RDF/XML serialization is ugly and annoying. 
• Semantic Web project sees a bright future of 

operations on the Universal graph, once it’s built, so 
they’d like to use RDF/XML for everything.



Thank You!
Tim.Bray@sun.com
tbray.org/ongoing/


