ECC Design Team: A Second Report

Dan Brown, Russ Housley, Tim Polk, Sean Turner, Kelvin Yiu December, 2007

Specifying ECC Public Keys

• RFC 3279

- Algorithm OID indicates elliptic curve, and includes algorithm parameters
- In conjunction with key usage extension, can restrict a key to signatures or key agreement
- Cannot differentiate a key intended for DH from an MQV key

Design Team's Initial Proposal (from "final" report)

- Retain 3279 OID/parameters
 - Critical mass is finally emerging!
- Specify certificate extension as SHOULD implement for CAs and clients
 - Criticality provides opt-in/opt-out mechanism to select interoperability or control
 - Applications can take advantage of hints in noncritical extension, even where unrecognized by the path validation module
- Consistent with current application/protocol expectations (Algorithm OID plus extensions)

WG Response to Initial Proposal

Don't put algorithm constraints in an extension.

ECC Design Team, Part 2

- Reformed Design Team
 - Decided two constraints needed to be supported for IETF protocols: *only DH* or *only MQV*
 - Constraints on hash algorithms (for signature keys) or KDFs (for DH and MQV) should be negotiated by the protocol
 - The ecPublicKey OID is mandatory to implement for IETF protocols
 - Implementations may be configured to require the constrained keys

Notes on ECC Signature Keys

- Key Usage already constrains usage
- Signature keys are inherently different
 - The signature verifier must use the algorithm and parameters specified by the signer to verify a signature, there is little chance for unintentional misuse of the public key.
- So, ecPublicKey is believed sufficient

Considered two strategies

- X9.62-2005 based
 - Restrictions are specified in the algorithm parameters in a SEQUENCE
 - IETF profile would limit SEQUENCE to only one restriction
- RFC 4055 based
 - Define two new algorithm OIDs, ecMQVPublicKey and ecDHPublicKey

X9.62-2005 based solution

- Pros
 - Strong alignment with ANSI and SECG
 - Migration path to additional granularity
 - Streamlined algorithm negotiation
- Cons
 - Application level parameter processing

RFC 4055 based Solution

- Pros
 - Same parameter structure for restricted and unrestricted public keys
 - No application level parameter processing
- Cons
 - No migration path to restrictions with higher granularity

Selected Proposal

- RFC 4055 based solution
 - Specify two new algorithm OIDs in X9 arc for inclusion in PKIX spec and X9.63
 - Retain the ecPublicKey algorithm syntax
 - IETF protocols that support the new OIDS MUST also support ecPublicKey

Rationale

- Protect deployed base for ECC keys
- Applications process same information for all ECC keys
- Compliant subset of X9 standards

Supplementary Design Team Proposals

- ECC Parameter handling
 - Named curves are more efficient to process than inherited parameters
 - MUST support for named curves
 - Support for explicit and inherited parameters is optional
- RFC 4055
 - KDF restrictions MUST not appear in certificates (currently SHOULD NOT)

Next Steps

- Design team will submit a new ID for consideration by WG
 - ID would obsolete both 3279 and 4055

Questions?