
1

Trust Anchor Management

Protocol (TAMP)

&

CMS Content Constraints (CCC)

70th IETF

Vancouver
Carl Wallace Raksha Reddy

cwallace@cygnacom.com r.reddy@radium.ncsc.mil

mailto:cwallace@cygnacom.com
mailto:r.reddy@radium.ncsc.mil

2

Agenda

• Trust Anchor Management Problem Statement

– http://www.ietf.org/internet-drafts/draft-wallace-ta-

mgmt-problem-statement-02.txt

• TAMP overview

– http://www.ietf.org/internet-drafts/draft-housley-tamp-

00.txt

• CCC overview

– http://www.ietf.org/internet-drafts/draft-housley-cms-

content-constraints-extn-00.txt

• Q & A

http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-wallace-ta-mgmt-problem-statement-02.txt
http://www.ietf.org/internet-drafts/draft-housley-tamp-00.txt
http://www.ietf.org/internet-drafts/draft-housley-tamp-00.txt
http://www.ietf.org/internet-drafts/draft-housley-tamp-00.txt
http://www.ietf.org/internet-drafts/draft-housley-tamp-00.txt
http://www.ietf.org/internet-drafts/draft-housley-tamp-00.txt
http://www.ietf.org/internet-drafts/draft-housley-tamp-00.txt
http://www.ietf.org/internet-drafts/draft-housley-tamp-00.txt
http://www.ietf.org/internet-drafts/draft-housley-tamp-00.txt
http://www.ietf.org/internet-drafts/draft-housley-tamp-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt
http://www.ietf.org/internet-drafts/draft-housley-cms-content-constraints-extn-00.txt

3

What are trust anchors?

• Trust anchors (TAs) are trusted public keys with
with associated information
– Used for signature verification

– Associated information varies with TA purpose
• RFC3280 requires issuer name, public key algorithm, public

key and optionally, the public key parameters associated with
the public key to support certification path validation

• TAs are used for various purposes
– Certification path validation

– Verification of signed objects, including firmware,
timestamps, OCSP responses, keys, etc.

• TAs are maintained in trust anchor stores, which
are sets of one or more trust anchors

4

Problem statement

• There is currently no standard mechanism for managing
trust anchor stores
– Proprietary means abound

– Remote management can be difficult (and is generally beyond
the reach of PKI policy authorities)

– Some application-specific standards are being developed (draft-
ietf-dnsext-trustupdate-timers)

• No standard representation for trust anchors
– Self-signed certificates are a de facto means of installing names

and keys for use with PKI

• However, self-signed certificates do not provide hooks for TA
management

– Uniform representation may not be necessary even if common
management means are used

5

General Proposal

• Define a protocol for managing trust anchor
stores
– Generic trust anchor representation requirements

include trust anchor name, public key information and
trust anchor usage

– Enable add/remove/query operations on trust anchor
stores

• Primary aim is to reduce reliance on out-of-band
trust mechanisms
– After initial trust anchors have been installed, out-of-

band means should not be necessary

6

TAMP Summary

• Eleven message formats

– Five request/response pairs

– TAMPError message

• All request messages signed; all response

messages optionally signed

• Uses CMS SignedData for message integrity

• Trust anchor (TA) privileges defined and

enforced using CMS Content Constraints (CCC)

• TAs represented using TrustAnchorInfo structure

7

Trust anchor types

• Three types: Apex, Management, Identity

• Apex trust anchor
– One per trust anchor store

– Superior to all other trust anchors; Unconstrained

– Different structure than other trust anchors. Includes
two public keys: operational and contingency
• The operational key is used in same manner as other trust

anchors

• The contingency key can only be used to update the apex
trust anchor. It is distributed in encrypted form. Single use.

• Contingency key is useful if operational key is compromised
or lost

• Contingency key may use a different algorithm than
operational key

8

Trust anchor types (continued)

• Management trust anchors

– Enable authorization checking for
management messages
• Where management messages are authenticated

using CMS (primarily focused on RFC 4108, TAMP
and draft-ietf-keyprov-symmetrickeyformat)

• Identity trust anchors

– Used to validate certification paths

– Generally associated with non-management
applications

9

· One per trust anchor store

· Represented as a trust anchor only (no

certificates)

· Initial Apex TA add during store initialization

· Contains two keys: operational and

contingency

· Managed via Apex Trust Anchor Update

messages which must be validated using

operational key or contingency key

· Zero or more per trust anchor store

· May be represented as Trust Anchor or

public key certificate

· Trust anchor instances are managed via

Trust Anchor Update messages which must

be validated using public key authorized for

TAMP

· Certificate instances must validate to a trust

anchor authorized to issue certificates

Apex trust

anchor

Management

TAs or CAs

Identity TAs or

CAs

Trust Anchor

Relationships

Signed Objects

per TA

definition

End entity

certificates

10

TrustAnchorInfo

TrustAnchorInfo ::= SEQUENCE {

version [0] TAMPVersion DEFAULT v2,

pubKey PublicKeyInfo,

keyId KeyIdentifier,

taType TrustAnchorType,

taTitle TrustAnchorTitle OPTIONAL,

certPath CertPathControls OPTIONAL }

• taType indicates the type of trust anchor
– ApexTrustAnchorInfo, MgmtTrustAnchorInfo or NULL

• taTitle is human readable name for the trust anchor

• certPath provides the controls needed to initialize an X.509
certification path validation algorithm implementation
– When absent, TA cannot be used to validate certificates

• New structure aims to help minimize size by avoiding fields in
certificates that are not processed during validation

11

ApexTrustAnchorInfo

ApexTrustAnchorInfo ::= SEQUENCE {

continPubKey ApexContingencyKey,

seqNum SeqNumber OPTIONAL }

ApexContingencyKey ::= SEQUENCE {

wrapAlgorithm AlgorithmIdentifier,

wrappedContinPubKey OCTET STRING }

SeqNumber ::= INTEGER (0..9223372036854775807)

-- attribute used to convey decryption key

id-aa-TAMP-contingencyPublicKeyDecryptKey

OBJECT IDENTIFIER ::= { id-attributes 63 }

PlaintextSymmetricKey ::= OCTET STRING

12

ApexTrustAnchorInfo (continued)

ApexTrustAnchorInfo ::= SEQUENCE {

continPubKey ApexContingencyKey,

seqNum SeqNumber OPTIONAL }

• ApexTrustAnchorInfo appears in the taType field of TrustAnchorInfo
– Carries the contingency key and optional sequence number

• continPubKey is the encrypted contingency key
– When decrypted, yields a PublicKeyInfo structure

– Decrypted using the contingencyPublicKeyDecryptKey attribute
• Appears as an unsigned attribute on messages that are verified using the

contingency key

• seqNum can be used to set the initial sequence number value
associated with the operational public key in the encapsulating
TrustAnchorInfo

13

MgmtTrustAnchorInfo

MgmtTrustAnchorInfo ::= SEQUENCE {

taUsage TrustAnchorUsage,

seqNum SeqNumber OPTIONAL }

TrustAnchorUsage ::= CMSContentConstraints

CMSContentConstraints ::= ContentTypeConstraintList

ContentTypeConstraintList ::= SEQUENCE SIZE (1..MAX)
OF ContentTypeConstraint

ContentTypeConstraint ::= SEQUENCE {

contentType ContentType,

canSource BOOLEAN DEFAULT TRUE,

attrConstraints AttrConstraintList OPTIONAL }

AttrConstraintList ::= SEQUENCE SIZE (1..MAX) OF
AttrConstraint

14

MgmtTrustAnchorInfo(continued)

MgmtTrustAnchorInfo ::= SEQUENCE {

taUsage TrustAnchorUsage,

seqNum SeqNumber OPTIONAL }

• MgmtTrustAnchorInfo appears in the taType field of
TrustAnchorInfo

– Carries the CCC privileges for the TA and optional
sequence number

• taUsage identifies the types of CMS contents the TA can
be used to verify

• seqNum can be used to set the initial sequence number
value associated with the public key in the encapsulating
TrustAnchorInfo

15

TAMPMsgRef

TAMPMsgRef ::= SEQUENCE {

target TargetIdentifier,

seqNum SeqNumber }

• TAMPMsgRef is used to target TAMP messages
and to indicate sequence number
– Target identifies the trust anchor stores or community

of stores that are the target of a message
• Can target all recipients, specific hardware types or instances

or via community identifiers

– Sequence number is a single use value that can be
used to match request and response messages

16

Targeting trust anchor stores

• TAMP enables the generation of very

targeted trust anchor management

messages

– Allows generation of messages targeting a

specific trust anchor store

• Community identifiers allow trust anchor

stores to be aggregated into groups

– Groups created and managed using TAMP

messages

17

TAMPStatusQuery and

TAMPStatusResponse
TAMPStatusQuery ::= SEQUENCE {

Version [0] TAMPVersion DEFAULT v2,

terse [1] TerseOrVerbose DEFAULT verbose,

query TAMPMsgRef }

TerseOrVerbose ::= ENUMERATED { terse(1),verbose(2)}

• Enables list of trust anchors resident in a trust store to be requested

and returned

– Terse responses list key identifiers only

– Verbose responses provide list of TrustAnchorInfo structures

18

TrustAnchorUpdate

TAMPUpdate ::= SEQUENCE {

version [0] TAMPVersion DEFAULT v2,

terse [1] TerseOrVerbose DEFAULT verbose,

msgRef TAMPMsgRef,

updates SEQUENCE SIZE (1..MAX) OF

TrustAnchorUpdate }

TrustAnchorUpdate ::= CHOICE {

add [1] EXPLICIT TrustAnchorInfo,

remove [2] PublicKeyInfo,

change [3] TrustAnchorChangeInfo }

• Includes a TrustAnchorInfo to add to the store, identifies a trust
anchor to remove by public key or presents new details to replace
those associated with a key already present in a trust store

• Each operation is subject to subordination checks

19

TrustAnchorUpdateConfirm

TAMPUpdateConfirm ::= SEQUENCE {

version [0] TAMPVersion DEFAULT v2,

update TAMPMsgRef,

confirm UpdateConfirm }

UpdateConfirm ::= CHOICE

terseConfirm [0] StatusCodeList,

verboseConfirm [1] VerboseUpdateConfirm }

VerboseUpdateConfirm ::= SEQUENCE {

status StatusCodeList,

taInfo TrustAnchorInfoList }

• Returns status of an update operation one of two way
– As a list of status codes (one per element in the update message)

– As a list of status codes and TAs (represents state following update)

20

TAMPApexUpdate and

TAMPApexUpdateConfirm
TAMPApexUpdate ::= SEQUENCE {

version [0] TAMPVersion DEFAULT v2,

terse [1] TerseOrVerbose DEFAULT verbose,

msgRef TAMPMsgRef,

clearTrustAnchors BOOLEAN,

clearCommunities BOOLEAN,

apexTA TrustAnchorInfo }

• Verified using either operational or contingency key

• Replacement information carried in apexTA field

• If clearTrustAnchors is TRUE, then all management and identity TAs
must be deleted leaving on the newly installed apex TA

• If clearCommunities is TRUE, then all community identifiers must be
deleted, leaving none

• TAMPApexUpdateConfirm (not shown) can return single status code
value (terse) or a status with a list of all TAs and communities
(verbose)

21

Other types

• TAMPCommunityUpdate allows community identifiers to
be added or removed from the list of communities
maintained by a trust anchor store (i.e., the communities
to which the store belongs)
– Terse and verbose response types

• SequenceNumberAdjust can be used to provide the
most recently used sequence number to one or more
stores
– Reduces possibility of replay

– Response simply includes a status code indicating the success
or failure of the sequence number adjust message processing

22

CCC Summary

• Used to restrict the types of CMS protected objects that
can be verified using a particular public key

• Expressed as permitted content types and constraints on
attribute values

• Privileges represented as either a TrustAnchorInfo field
or as a certificate extension
– Privileges for a particular content originator are output from

certification path validation (intersection of CCC values in path)

• Object type represented by CMS content type OID
– Object attributes collected by processing authenticated layers in

a CMS message

– Each party collaborating to produce a signed or authenticated
content must be authorized for the innermost content types and
attribute values

23

CMS Paths
+---+

| ContentInfo |

| +---+ |

| | SignedData | |

| | +---+ | |

| | | ContentCollection | | |

| | | +----------------------+ +--------------------+ | | |

| | | | SignedData | | SignedData | | | |

| | | | +------------------+ | | +----------------+ | | | |

| | | | | EncryptedData | | | | Firmware | | | | |

| | | | | | | | | Package | | | | |

| | | | | +--------------+ | | | | | | | | |

| | | | | | Firmware | | | | +----------------+ | | | |

| | | | | | Package | | | +--------------------+ | | |

| | | | | | | | | | | |

| | | | | +--------------+ | | | | |

| | | | +------------------+ | | | |

| | | +----------------------+ | | |

| | +---+ | |

| +---+ |

+---+

24

CMS Paths (continued)
ContentInfo

|

|

V

SignedData

|

V

ContentCollection

|

+----------+--------------+

| |

V V

SignedData SignedData

| |

V V

EncryptedData FirmwarePackage

|

V

FirmwarePackage

25

CMS Paths (continued)

• Two types of leaf nodes: encrypted leaf

nodes and payload leaf nodes

– Encrypted leaf nodes are one of the following

types: EncryptedData, EnvelopedData or

AuthEnvelopedData

– Payload lead nodes are all other leaf node

types (non-encrypted CMS types like

SignedData, ContentCollection, etc. are not

leaf nodes)

26

Subject permissions

• Identify the types of leaf nodes for which a
subject can serve as originator or collaborator
– Constrain attribute values a subject can use for

particular types of leaf nodes

• Collected and evaluated during path processing
– Content type and attributes collected from CMS path

are provided as input

– Constraints are collected from trust anchor and
intersected with certificate-based constraints and
evaluated during validation wrap-up

– Default attributes are returned along with constraints
for the input content type
• Constraints may be used when processing the content

27

Object type and attributes

• Public keys and signed or authenticated
attributes are collected from a CMS path
– For encrypted leaf nodes, these are simply returned

and may be used for further processing

– For payload leaf nodes, a path is validated to each
public key providing the object type and attributes as
input
• Each public key must be authorized for object type and each

attribute value

• Public key used to verify the signature or MAC closest to the
payload leaf node must be authorized as a source for the
object type

28

Summary

• Use TAMP to manage TAs and associated
CMS-focused privileges

• Use CCC to express and enforce CMS-focused
privileges

• Use RFC4108 and draft-ietf-keyprov-
symmetrickeyformat to package firmware and
keys with source authentication controlled by
TAMP and CCC

• CCC could be useful for other CMS-protected
payloads
– Attributes give flexibility beyond extendedKeyUsage

