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Agenda

• Trust Anchor Management Problem Statement

– http://www.ietf.org/internet-drafts/draft-wallace-ta-

mgmt-problem-statement-02.txt

• TAMP overview

– http://www.ietf.org/internet-drafts/draft-housley-tamp-

00.txt

• CCC overview

– http://www.ietf.org/internet-drafts/draft-housley-cms-

content-constraints-extn-00.txt

• Q & A
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What are trust anchors?

• Trust anchors (TAs) are trusted public keys with 
with associated information
– Used for signature verification

– Associated information varies with TA purpose
• RFC3280 requires issuer name, public key algorithm, public 

key and optionally, the public key parameters associated with 
the public key to support certification path validation

• TAs are used for various purposes
– Certification path validation

– Verification of signed objects, including firmware, 
timestamps, OCSP responses, keys, etc.

• TAs are maintained in trust anchor stores, which 
are sets of one or more trust anchors



4

Problem statement

• There is currently no standard mechanism for managing 
trust anchor stores
– Proprietary means abound

– Remote management can be difficult (and is generally beyond 
the reach of PKI policy authorities)

– Some application-specific standards are being developed (draft-
ietf-dnsext-trustupdate-timers)

• No standard representation for trust anchors
– Self-signed certificates are a de facto means of installing names 

and keys for use with PKI

• However, self-signed certificates do not provide hooks for TA 
management

– Uniform representation may not be necessary even if common 
management means are used
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General Proposal

• Define a protocol for managing trust anchor 
stores
– Generic trust anchor representation requirements 

include trust anchor name, public key information and 
trust anchor usage

– Enable add/remove/query operations on trust anchor 
stores

• Primary aim is to reduce reliance on out-of-band 
trust mechanisms 
– After initial trust anchors have been installed, out-of-

band means should not be necessary
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TAMP Summary

• Eleven message formats

– Five request/response pairs 

– TAMPError message

• All request messages signed; all response 

messages optionally signed

• Uses CMS SignedData for message integrity

• Trust anchor (TA) privileges defined and 

enforced using CMS Content Constraints (CCC)

• TAs represented using TrustAnchorInfo structure 
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Trust anchor types

• Three types: Apex, Management, Identity

• Apex trust anchor
– One per trust anchor store

– Superior to all other trust anchors; Unconstrained

– Different structure than other trust anchors. Includes 
two public keys: operational and contingency
• The operational key is used in same manner as other trust 

anchors

• The contingency key can only be used to update the apex 
trust anchor.  It is distributed in encrypted form.  Single use.

• Contingency key is useful if operational key is compromised 
or lost

• Contingency key may use a different algorithm than 
operational key
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Trust anchor types (continued)

• Management trust anchors

– Enable authorization checking for 
management messages
• Where management messages are authenticated 

using CMS (primarily focused on RFC 4108, TAMP 
and draft-ietf-keyprov-symmetrickeyformat)

• Identity trust anchors

– Used to validate certification paths

– Generally associated with non-management 
applications
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· One per trust anchor store

· Represented as a trust anchor only (no 

certificates)

· Initial Apex TA add during store initialization

· Contains two keys: operational and 

contingency

· Managed via Apex Trust Anchor Update 

messages which must be validated using 

operational key or contingency key

· Zero or more per trust anchor store

· May be represented as Trust Anchor or 

public key certificate

· Trust anchor instances are managed via 

Trust Anchor Update messages which must 

be validated using public key authorized for 

TAMP

· Certificate instances must validate to a trust 

anchor authorized to issue certificates

Apex trust 

anchor

Management 

TAs or CAs

Identity TAs or 

CAs

Trust Anchor 

Relationships

Signed Objects 

per TA 

definition

End entity 

certificates
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TrustAnchorInfo

TrustAnchorInfo ::= SEQUENCE {

version   [0] TAMPVersion DEFAULT v2,

pubKey    PublicKeyInfo,

keyId     KeyIdentifier,

taType    TrustAnchorType,

taTitle   TrustAnchorTitle OPTIONAL,

certPath  CertPathControls OPTIONAL }

• taType indicates the type of trust anchor
– ApexTrustAnchorInfo, MgmtTrustAnchorInfo or NULL

• taTitle is human readable name for the trust anchor

• certPath provides the controls needed to initialize an X.509 
certification path validation algorithm implementation
– When absent, TA cannot be used to validate certificates

• New structure aims to help minimize size by avoiding fields in 
certificates that are not processed during validation
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ApexTrustAnchorInfo

ApexTrustAnchorInfo ::= SEQUENCE {

continPubKey  ApexContingencyKey,

seqNum        SeqNumber OPTIONAL }

ApexContingencyKey ::= SEQUENCE {

wrapAlgorithm AlgorithmIdentifier,

wrappedContinPubKey  OCTET STRING }

SeqNumber ::= INTEGER (0..9223372036854775807)

-- attribute used to convey decryption key

id-aa-TAMP-contingencyPublicKeyDecryptKey

OBJECT IDENTIFIER ::= { id-attributes 63 }

PlaintextSymmetricKey ::= OCTET STRING
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ApexTrustAnchorInfo (continued)

ApexTrustAnchorInfo ::= SEQUENCE {

continPubKey  ApexContingencyKey,

seqNum        SeqNumber OPTIONAL }

• ApexTrustAnchorInfo appears in the taType field of TrustAnchorInfo
– Carries the contingency key and optional sequence number

• continPubKey is the encrypted contingency key
– When decrypted, yields a PublicKeyInfo structure

– Decrypted using the contingencyPublicKeyDecryptKey attribute 
• Appears as an unsigned attribute on messages that are verified using the 

contingency key

• seqNum can be used to set the initial sequence number value 
associated with the operational public key in the encapsulating 
TrustAnchorInfo
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MgmtTrustAnchorInfo

MgmtTrustAnchorInfo ::= SEQUENCE {

taUsage  TrustAnchorUsage,

seqNum   SeqNumber OPTIONAL }

TrustAnchorUsage ::= CMSContentConstraints

CMSContentConstraints ::= ContentTypeConstraintList

ContentTypeConstraintList ::= SEQUENCE SIZE (1..MAX) 
OF ContentTypeConstraint

ContentTypeConstraint ::= SEQUENCE {

contentType      ContentType,

canSource        BOOLEAN DEFAULT TRUE,

attrConstraints  AttrConstraintList OPTIONAL }

AttrConstraintList ::= SEQUENCE SIZE (1..MAX) OF 
AttrConstraint
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MgmtTrustAnchorInfo(continued)

MgmtTrustAnchorInfo ::= SEQUENCE {

taUsage  TrustAnchorUsage,

seqNum   SeqNumber OPTIONAL }

• MgmtTrustAnchorInfo appears in the taType field of 
TrustAnchorInfo

– Carries the CCC privileges for the TA and optional 
sequence number

• taUsage identifies the types of CMS contents the TA can 
be used to verify

• seqNum can be used to set the initial sequence number 
value associated with the public key in the encapsulating 
TrustAnchorInfo
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TAMPMsgRef

TAMPMsgRef ::= SEQUENCE {

target  TargetIdentifier,

seqNum  SeqNumber }

• TAMPMsgRef is used to target TAMP messages 
and to indicate sequence number
– Target identifies the trust anchor stores or community 

of stores that are the target of a message
• Can target all recipients, specific hardware types or instances 

or via community identifiers

– Sequence number is a single use value that can be 
used to match request and response messages
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Targeting trust anchor stores

• TAMP enables the generation of very 

targeted trust anchor management 

messages

– Allows generation of messages targeting a 

specific trust anchor store

• Community identifiers allow trust anchor 

stores to be aggregated into groups

– Groups created and managed using TAMP 

messages
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TAMPStatusQuery and 

TAMPStatusResponse
TAMPStatusQuery ::= SEQUENCE {

Version  [0] TAMPVersion DEFAULT v2,

terse    [1] TerseOrVerbose DEFAULT verbose,

query    TAMPMsgRef }

TerseOrVerbose ::= ENUMERATED { terse(1),verbose(2)}

• Enables list of trust anchors resident in a trust store to be requested 

and returned

– Terse responses list key identifiers only

– Verbose responses provide list of TrustAnchorInfo structures
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TrustAnchorUpdate

TAMPUpdate ::= SEQUENCE {

version  [0] TAMPVersion DEFAULT v2,

terse    [1] TerseOrVerbose DEFAULT verbose,

msgRef   TAMPMsgRef,

updates  SEQUENCE SIZE (1..MAX) OF 

TrustAnchorUpdate }

TrustAnchorUpdate ::= CHOICE {

add     [1] EXPLICIT TrustAnchorInfo,

remove  [2] PublicKeyInfo,

change  [3] TrustAnchorChangeInfo }

• Includes a TrustAnchorInfo to add to the store, identifies a trust 
anchor to remove by public key or presents new details to replace 
those associated with a key already present in a trust store

• Each operation is subject to subordination checks



19

TrustAnchorUpdateConfirm

TAMPUpdateConfirm ::= SEQUENCE {

version  [0] TAMPVersion DEFAULT v2,

update   TAMPMsgRef,

confirm  UpdateConfirm }

UpdateConfirm ::= CHOICE

terseConfirm    [0] StatusCodeList,

verboseConfirm  [1] VerboseUpdateConfirm }

VerboseUpdateConfirm ::= SEQUENCE {

status   StatusCodeList,

taInfo   TrustAnchorInfoList }

• Returns status of an update operation one of two way
– As a list of status codes (one per element in the update message) 

– As a list of status codes and TAs (represents state following update)
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TAMPApexUpdate and 

TAMPApexUpdateConfirm
TAMPApexUpdate ::= SEQUENCE {

version    [0] TAMPVersion DEFAULT v2,

terse      [1] TerseOrVerbose DEFAULT verbose,

msgRef             TAMPMsgRef,

clearTrustAnchors  BOOLEAN,

clearCommunities   BOOLEAN,

apexTA             TrustAnchorInfo }

• Verified using either operational or contingency key

• Replacement information carried in apexTA field

• If clearTrustAnchors is TRUE, then all management and identity TAs 
must be deleted leaving on the newly installed apex TA

• If clearCommunities is TRUE, then all community identifiers must be 
deleted, leaving none

• TAMPApexUpdateConfirm (not shown) can return single status code 
value (terse) or a status with a list of all TAs and communities 
(verbose)
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Other types

• TAMPCommunityUpdate allows community identifiers to 
be added or removed from the list of communities 
maintained by a trust anchor store (i.e., the communities 
to which the store belongs)
– Terse and verbose response types

• SequenceNumberAdjust can be used to provide the 
most recently used sequence number to one or more 
stores
– Reduces possibility of replay

– Response simply includes a status code indicating the success 
or failure of the sequence number adjust message processing
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CCC Summary

• Used to restrict the types of CMS protected objects that 
can be verified using a particular public key

• Expressed as permitted content types and constraints on 
attribute values

• Privileges represented as either a TrustAnchorInfo field 
or as a certificate extension
– Privileges for a particular content originator are output from 

certification path validation (intersection of CCC values in path)

• Object type represented by CMS content type OID
– Object attributes collected by processing authenticated layers in 

a CMS message

– Each party collaborating to produce a signed or authenticated 
content must be authorized for the innermost content types and 
attribute values
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CMS Paths
+---------------------------------------------------------+

| ContentInfo                                             |

| +-----------------------------------------------------+ |

| | SignedData                                          | |

| | +-------------------------------------------------+ | |

| | | ContentCollection                               | | |

| | | +----------------------+ +--------------------+ | | |

| | | | SignedData           | | SignedData         | | | |

| | | | +------------------+ | | +----------------+ | | | |

| | | | | EncryptedData    | | | | Firmware       | | | | |

| | | | |                  | | | | Package        | | | | |

| | | | | +--------------+ | | | |                | | | | |

| | | | | | Firmware     | | | | +----------------+ | | | |

| | | | | | Package      | | | +--------------------+ | | |

| | | | | |              | | |                        | | |

| | | | | +--------------+ | |                        | | |

| | | | +------------------+ |                        | | |

| | | +----------------------+                        | | |

| | +-------------------------------------------------+ | |

| +-----------------------------------------------------+ |

+---------------------------------------------------------+
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CMS Paths (continued)
ContentInfo                         

| 

|                             

V                             

SignedData                        

|                             

V                             

ContentCollection                 

|                             

+----------+--------------+              

|                         |              

V                         V              

SignedData              SignedData         

|                         |              

V                         V              

EncryptedData            FirmwarePackage    

|                                        

V                                        

FirmwarePackage 



25

CMS Paths (continued)

• Two types of leaf nodes: encrypted leaf 

nodes and payload leaf nodes

– Encrypted leaf nodes are one of the following 

types: EncryptedData, EnvelopedData or 

AuthEnvelopedData

– Payload lead nodes are all other leaf node 

types (non-encrypted CMS types like 

SignedData, ContentCollection, etc. are not 

leaf nodes)
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Subject permissions

• Identify the types of leaf nodes for which a 
subject can serve as originator or collaborator
– Constrain attribute values a subject can use for 

particular types of leaf nodes

• Collected and evaluated during path processing
– Content type and attributes collected from CMS path 

are provided as input

– Constraints are collected from trust anchor and 
intersected with certificate-based constraints and 
evaluated during validation wrap-up

– Default attributes are returned along with constraints 
for the input content type
• Constraints may be used when processing the content
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Object type and attributes

• Public keys and signed or authenticated 
attributes are collected from a CMS path
– For encrypted leaf nodes, these are simply returned 

and may be used for further processing

– For payload leaf nodes, a path is validated to each 
public key providing the object type and attributes as 
input
• Each public key must be authorized for object type and each 

attribute value

• Public key used to verify the signature or MAC closest to the 
payload leaf node must be authorized as a source for the 
object type
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Summary

• Use TAMP to manage TAs and associated 
CMS-focused privileges

• Use CCC to express and enforce CMS-focused 
privileges

• Use RFC4108 and draft-ietf-keyprov-
symmetrickeyformat to package firmware and 
keys with source authentication controlled by 
TAMP and CCC

• CCC could be useful for other CMS-protected 
payloads
– Attributes give flexibility beyond extendedKeyUsage


