

Preventing Fragmentation in
Client Initiated Connection

Marc Petit-Huguenin

draft-petithuguenin-sip-outbound-fragmentation-02

Hybrid UDP-TCP Transport

TU
Transaction

Layers

Transport
Layer

UAC/Proxy

DNS UAS/Proxy

Query NAPTR

Answer SIP+D2U

Request UDP
Request TCP

Hybrid UDP-TCP Transport

● If a server listens on UDP, it must also
listen on TCP
Section 18.2.1: “For any port and interface that a server listens on for UDP, [the
server] MUST listen on the same port and interface for TCP.”

● A client must switch from UDP to TCP if
the message is larger than the MTU
Section 18.1.1: “If a request is within 200 bytes of the path MTU [...] the request
MUST be sent using a RFC 2914 congestion controlled transport protocol, such as
TCP.”

● Not defined, but a Hybrid DTLS-TLS
Transport should work the same way by
using session resumption.

Response Fragmentation

TU
Transaction

Layers

Transport
Layer

UA/Proxy

UA/Proxy

REGISTER UDP
Request

Response
Fragment

Response

Fragment

Response Fragmentation

● This is a different problem that will not be
discussed today.

● See the following drafts:
draft-gurbani-sip-large-udp-response
draft-petithuguenin-sip-fragmentation-responses

Problem with NAT

TU
Transaction

Layers

Transport
Layer

UA/Proxy

DNSUA

Query NAPTR

Answer SIP+D2U

REGISTER UDP

NAT

200 R UDP

INVITE UDP
INVITE TCP

Problem with NAT

● The UA inside the NAT will listen on an
UDP port and a TCP port.

● The registration will create an UDP
binding in the NAT.

● The TCP connection in the other direction
will be blocked by the NAT and will never
reach the UA inside the NAT.

Why UDP: Performances

● Only few SIP messages needs TCP:
– INVITE/ACK/UPDATE/200 with SDP and/or

History-Info.
– NOTIFY with full notification
– MESSAGE

● Other SIP messages can use UDP:
– INVITE/ACK/UPDATE/200 without SDP
– BYE/CANCEL/SUBSCRIBE/PRACK
– NOTIFY with partial notification

Why UDP: Direct Connection for
Subsequent Requests

UAProxyProxyUA

NAT NAT

INVITE
INVITE

INVITE

200 I
200 I

200 I

ACK

BYE

200 B

Why UDP: Direct Connection for
Subsequent Requests

● If the proxies does not Record-Route and
UDP is used, the subsequent requests can
be sent directly from UA to UA in most of
the cases.

● If TCP is used, at least one relay is
needed on the public Internet.

Solution 1: Extend Outbound

TU
Transaction

Layers

Transport
Layer

UA/Proxy

UA

REGISTER (UDP)

NAT

200 R (UDP)
INVITE (UDP)

STUN ForceTCP (UDP)

STUN GetToken (TCP)

INVITE (TCP)

Solution 1: Extend Outbound

● Solution described in the draft.
● Use the existing UDP flow to send a STUN

message to the UA.
● The UA opens a TCP connection to the

same port than used by the UDP flow.
● The server uses the new TCP connection

to send the large SIP message.

Solution 2: Extends STUN Relay

TU
Transaction

Layers

Transport
Layer

UA/Proxy

STUN RelayUA

REGISTER UDP

NAT

INVITE UDP
INVITE TCP

Allocate+

REGISTER UDP

Set Active Destination

ForceTCP

SetToken

INVITE TCP

Solution 2: Extends STUN Relay

● The UA sends an Allocate Request over
UDP to a STUN Relay, with an extension
signaling that the relay should listen for
UDP and TCP on the same port.

● When the STUN Relay receives a
connection on the TCP port, it sends a
ForceTCP message to the UA over UDP.

● The UA opens a TCP connection to the
STUN Relay, that can be used to relay the
data.

Questions

● Do we agree on the problem?
● Is it the right WG for this work?

