Simple Network Management Protocol

(SNMP) EnginelD Discovery

draft-schoenw-snmp-discover-01

Jirgen Schonwalder

Jacobs University Bremen
Bremen, Germany

68. IETF March 2007

Jiirgen Schonwalder draft-schoenw-snmp-discover-01



Problem: Context EnginelD Discovery

@ Applications need to know the contextEnginelD in order
to access information

Jiirgen Schonwalder draft-schoenw-snmp-discover-01



Problem: Context EnginelD Discovery

@ Applications need to know the contextEnginelD in order
to access information

@ Implementations typically use USM's securityEnginelD as
a "best guess” for the contextEnginelD

Jiirgen Schonwalder draft-schoenw-snmp-discover-01



Problem: Context EnginelD Discovery

@ Applications need to know the contextEnginelD in order
to access information

@ Implementations typically use USM's securityEnginelD as
a "best guess” for the contextEnginelD

@ TSM does not need a securityEnginelD and hence TSM
lacks a mechanism to “best guess” the contextEnginelD

Jiirgen Schonwalder draft-schoenw-snmp-discover-01



Problem: Context EnginelD Discovery

@ Applications need to know the contextEnginelD in order
to access information

@ Implementations typically use USM's securityEnginelD as
a "best guess” for the contextEnginelD

@ TSM does not need a securityEnginelD and hence TSM
lacks a mechanism to “best guess” the contextEnginelD

@ Since many applications rely on contextEnginelD
discovery (i.e., they do not maintain a data store with
discovered or configured enginelDs), we need to provide a
mechanism to discover appropriate enginelDs

Jiirgen Schonwalder draft-schoenw-snmp-discover-01



Proposal: Introduce well-known localEnginelD

@ Introduce a well-known “localEnginelD" which can be
used to refer to the local engine of an “agent”

Jiirgen Schonwalder draft-schoenw-snmp-discover-01



Proposal: Introduce well-known localEnginelD

@ Introduce a well-known “localEnginelD" which can be
used to refer to the local engine of an “agent”

@ In terms of the SNMP architecture, SNMP applications
register themself twice under both the real enginelD and
the well-known “localEnginelD” (see the
registerContextEnginelD() ASI)

Jiirgen Schonwalder draft-schoenw-snmp-discover-01



Proposal: Introduce well-known localEnginelD

@ Introduce a well-known “localEnginelD" which can be
used to refer to the local engine of an “agent”

@ In terms of the SNMP architecture, SNMP applications
register themself twice under both the real enginelD and
the well-known “localEnginelD” (see the
registerContextEnginelD() ASI)

@ Applications can use the “localEnginelD"” to retrieve data
local to the remote engine (and in particular the
snmpEnginelD.0 scalar)

Jiirgen Schonwalder draft-schoenw-snmp-discover-01



Proposal: Introduce well-known localEnginelD

@ Introduce a well-known “localEnginelD" which can be
used to refer to the local engine of an “agent”

@ In terms of the SNMP architecture, SNMP applications
register themself twice under both the real enginelD and
the well-known “localEnginelD” (see the
registerContextEnginelD() ASI)

@ Applications can use the “localEnginelD"” to retrieve data
local to the remote engine (and in particular the
snmpEnginelD.0 scalar)

@ Essentially, the discovery problem is solved by avoiding it
through the introduction of a well-known constant

@ Proposal covers all the non-proxy cases (which is believed
to be the large majority) and is USM compatible

Jiirgen Schonwalder draft-schoenw-snmp-discover-01



Issue: Allocating a well-known localEnginelD

@ Need to allocate a value which is consistent with the
SnmpEnginelD textual convention (RFC3411)

@ Proposal: Use the variable length format 3) together with
the unallocated format value 6 and the enterprise ID 0:
localEnginelD OCTET STRING ::= '8000000006'H
@ There are no documented rules how to allocate something
in the SnmpEnginelD number space:

e So what is the procedure to allocate a constant?
e Is '8000000006'H the right value to choose?

Jiirgen Schonwalder draft-schoenw-snmp-discover-01



