
Simple Network Management Protocol

(SNMP) EngineID Discovery

draft-schoenw-snmp-discover-01

Jürgen Schönwälder

Jacobs University Bremen
Bremen, Germany

68. IETF March 2007

Jürgen Schönwälder draft-schoenw-snmp-discover-01 1



Problem: Context EngineID Discovery

Applications need to know the contextEngineID in order
to access information

Implementations typically use USM’s securityEngineID as
a “best guess” for the contextEngineID

TSM does not need a securityEngineID and hence TSM
lacks a mechanism to “best guess” the contextEngineID

Since many applications rely on contextEngineID
discovery (i.e., they do not maintain a data store with
discovered or configured engineIDs), we need to provide a
mechanism to discover appropriate engineIDs

Jürgen Schönwälder draft-schoenw-snmp-discover-01 2



Problem: Context EngineID Discovery

Applications need to know the contextEngineID in order
to access information

Implementations typically use USM’s securityEngineID as
a “best guess” for the contextEngineID

TSM does not need a securityEngineID and hence TSM
lacks a mechanism to “best guess” the contextEngineID

Since many applications rely on contextEngineID
discovery (i.e., they do not maintain a data store with
discovered or configured engineIDs), we need to provide a
mechanism to discover appropriate engineIDs

Jürgen Schönwälder draft-schoenw-snmp-discover-01 2



Problem: Context EngineID Discovery

Applications need to know the contextEngineID in order
to access information

Implementations typically use USM’s securityEngineID as
a “best guess” for the contextEngineID

TSM does not need a securityEngineID and hence TSM
lacks a mechanism to “best guess” the contextEngineID

Since many applications rely on contextEngineID
discovery (i.e., they do not maintain a data store with
discovered or configured engineIDs), we need to provide a
mechanism to discover appropriate engineIDs

Jürgen Schönwälder draft-schoenw-snmp-discover-01 2



Problem: Context EngineID Discovery

Applications need to know the contextEngineID in order
to access information

Implementations typically use USM’s securityEngineID as
a “best guess” for the contextEngineID

TSM does not need a securityEngineID and hence TSM
lacks a mechanism to “best guess” the contextEngineID

Since many applications rely on contextEngineID
discovery (i.e., they do not maintain a data store with
discovered or configured engineIDs), we need to provide a
mechanism to discover appropriate engineIDs

Jürgen Schönwälder draft-schoenw-snmp-discover-01 2



Proposal: Introduce well-known localEngineID

Introduce a well-known “localEngineID” which can be
used to refer to the local engine of an “agent”

In terms of the SNMP architecture, SNMP applications
register themself twice under both the real engineID and
the well-known “localEngineID” (see the
registerContextEngineID() ASI)

Applications can use the “localEngineID” to retrieve data
local to the remote engine (and in particular the
snmpEngineID.0 scalar)

Essentially, the discovery problem is solved by avoiding it
through the introduction of a well-known constant

Proposal covers all the non-proxy cases (which is believed
to be the large majority) and is USM compatible

Jürgen Schönwälder draft-schoenw-snmp-discover-01 3



Proposal: Introduce well-known localEngineID

Introduce a well-known “localEngineID” which can be
used to refer to the local engine of an “agent”

In terms of the SNMP architecture, SNMP applications
register themself twice under both the real engineID and
the well-known “localEngineID” (see the
registerContextEngineID() ASI)

Applications can use the “localEngineID” to retrieve data
local to the remote engine (and in particular the
snmpEngineID.0 scalar)

Essentially, the discovery problem is solved by avoiding it
through the introduction of a well-known constant

Proposal covers all the non-proxy cases (which is believed
to be the large majority) and is USM compatible

Jürgen Schönwälder draft-schoenw-snmp-discover-01 3



Proposal: Introduce well-known localEngineID

Introduce a well-known “localEngineID” which can be
used to refer to the local engine of an “agent”

In terms of the SNMP architecture, SNMP applications
register themself twice under both the real engineID and
the well-known “localEngineID” (see the
registerContextEngineID() ASI)

Applications can use the “localEngineID” to retrieve data
local to the remote engine (and in particular the
snmpEngineID.0 scalar)

Essentially, the discovery problem is solved by avoiding it
through the introduction of a well-known constant

Proposal covers all the non-proxy cases (which is believed
to be the large majority) and is USM compatible

Jürgen Schönwälder draft-schoenw-snmp-discover-01 3



Proposal: Introduce well-known localEngineID

Introduce a well-known “localEngineID” which can be
used to refer to the local engine of an “agent”

In terms of the SNMP architecture, SNMP applications
register themself twice under both the real engineID and
the well-known “localEngineID” (see the
registerContextEngineID() ASI)

Applications can use the “localEngineID” to retrieve data
local to the remote engine (and in particular the
snmpEngineID.0 scalar)

Essentially, the discovery problem is solved by avoiding it
through the introduction of a well-known constant

Proposal covers all the non-proxy cases (which is believed
to be the large majority) and is USM compatible

Jürgen Schönwälder draft-schoenw-snmp-discover-01 3



Issue: Allocating a well-known localEngineID

Need to allocate a value which is consistent with the
SnmpEngineID textual convention (RFC3411)

Proposal: Use the variable length format 3) together with
the unallocated format value 6 and the enterprise ID 0:

localEngineID OCTET STRING ::= ’8000000006’H

There are no documented rules how to allocate something
in the SnmpEngineID number space:

So what is the procedure to allocate a constant?
Is ’8000000006’H the right value to choose?

Jürgen Schönwälder draft-schoenw-snmp-discover-01 4


