
An EAP Method for Extending EAP
(draft-ohba-hokey-emu-eap-ext-00.txt)

Yoshihiro Ohba
Subir Das

Goal: Backwards Compatibility

• Allow EAP to add more functionalities
including HOKEY, without loss of
backwards compatibility with existing EAP
and EAP methods implementations

Gap Analysis: EMSK
• HOKEY is defining some usage on EMSK

– EMSK is mandatory to export in RFC 3748
– In reality, most existing implementations do not export EMSK

• WPA and WPA2 certificates do not require EMSK
• We can’t blame them because we did not define EMSK usages

• Defining EMSK usages with expectation of support from all EAP
methods will create a serious deployment gap
– Industry may not use HOKEY if there is no smooth migration path

• e.g., 802.11i
• In addition, a mechanism for enabling and bootstrapping each EMSK

usage is needed. However…
– Relying on pre-configuration is a bad idea
– Defining such a mechanism for every EAP method is also bad
– Defining such a mechanism in EAP lower layer could make the situation

even more worse

Gap Analysis: Channel Binding

• EAP keying identifies two Channel
Binding approaches:
– Binding based on a KDF
– Binding based on parameter exchange

• There is no EAP method that “actively”
supports Channel Binding
– The deployment bar is too high if Channel

Binding is required for each EAP method

EAP Facts

• EAP is not extensible without providing
backwards compatibility for itself
– No version field
– No extension header
– Silent discarding a message with a new Code

• Is there any way to add more functionalities to
EAP without coming up with EAPv2?
– Yes, by defining a new EAP method used for extending

EAP
– Basic backwards compatibility is provided with NAK

Design choices for a new EAP
method to extend EAP

• Sequencing in a single EAP conversation
– I.e., an authentication method followed by the new EAP method

followed by EAP-Success/Failure
– Sequencing multiple authentication methods (Types 4 and greater)

is not allowed in RFC 3748 except inside a tunneling method
• Sequencing EAP conversations

– I.e., run an authentication method in an EAP conversation and then
start another EAP conversation with the new EAP

– Many lower layers do not support sequencing EAP conversations
to generate a single network access authorization

• Tunneling
– I.e., run an authentication method within the new EAP method
– Sounds like the most backwards-compatible way

EAP-EXT in a Nutshell
• EAP-EXT provides capabilities exchange.

– Capabilities: re-authentication and channel binding. Other capabilities such as
handover keying can also be added

• At least one EAP method (e.g., EAP-TLS) is run inside EAP-EXT for
authenticating the peer

• After an inner method generates EAP keying material, exchanged capabilities
are protected

• Even if capability negotiations fail, the peer is still authorized for network
access using the basic EAP functionality which is available now

• It is allowed to run multiple authentication methods inside EAP-EXT with
cryptographic binding

– N-th auth method is protected with MSK from (N-1)-th auth method (Integrity
chaining)

• EAP-EXT exports MSK and EMSK even if inner methods do not generate
EMSK

– (MSK,EMSK)=KDF(MSK_i, "EAP-EXT-EAP-Keying-Material", 128)
• MSK_i : MSK from the last successful inner method

EAP-EXT Example
(single auth method)

Peer Server
| EAP-Request/Identity (optional) |
|<---|
| EAP-Response/Identity (optional) |
|--->|
| EAP-Request/EXT{Cap.(R,C),PRF(1,2),Method(Type X),|
| CBM(1,2),CBD} |
|<---|
| EAP-Response/EXT{Cap.(R,C),PRF(1),Method(Type X), |
| CBM(1)} |
|--->|
| ... |
| EAP-Request/EXT{F,Cap.(R,C),PRF(1,2),Peer-ID, |
| Server-ID,Reauth-Key-Lifetime, |
| CBM(1,2),CBD,AUTH} |
|<---|
| EAP-Response/EXT{F,Cap.(R,C),PRF(2),CBM(1),AUTH} |
|--->|
| EAP-Success |
|<---|Re-auth related parameters

Channel Binding parameters

Unprotected

Protected
(by AUTH TLV)

Inner method

PRF negotiation for EMSK

Message Format
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Code | Identifier | Length |
+-+
| Type | Version |F|E| Reserved | Capabilities |
+-+
| TLV(s) (optional) ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

•F-bit indicates whether this is the final message from the sender
•E-bit indicates an error
•Capabilties: R-bit for re-authentication and C bit for Channel Binding
•TLV(s): See below

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|R C r r r r r r|
+-+-+-+-+-+-+-+-+

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type | Length |
+-+
| Value ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

TLVs

• PRF TLV: contains a list of PRF algorithms for
USRK derivation

• Re-auth related TLVs
– Peer-ID TLV, Server-ID TLV, Reauth-Key-Lifetime
– Actual re-auth mechanism is not specified in this draft

• Channel Binding related TLVs
– Channel Binding Mechanism TLV: contains a list of

CB mechanisms
– Channel Binding Data TLV: contains parameters

specific to a CB mechanism (some CB mechanism does
not require this)

Additional work to be done

• Add a TLV for encrypting other TLVs

Summary
• Without addressing backwards compatibility

issues, industry may not use new
functionalities relating to EAP, including
HOKEY

• This proposal addresses the backwards
compatibility issues and allows a smooth
migration path to HOKEY

	An EAP Method for Extending EAP(draft-ohba-hokey-emu-eap-ext-00.txt)
	Goal: Backwards Compatibility
	Gap Analysis: EMSK
	Gap Analysis: Channel Binding
	EAP Facts
	Design choices for a new EAP method to extend EAP
	EAP-EXT in a Nutshell
	EAP-EXT Example (single auth method)
	Message Format
	TLVs
	Additional work to be done
	Summary

