An EAP Method for Extending EAP
(draft-ohba-hokey-emu-eap-ext-00.txt)

Yoshihiro Ohba
Subir Das

Goal: Backwards Compatibility

« Allow EAP to add more functionalities
Including HOKEY, without loss of
backwards compatibility with existing EAP
and EAP methods implementations

Gap Analysis: EMSK

HOKEY is defining some usage on EMSK
— EMSK is mandatory to export in RFC 3748
— In reality, most existing implementations do not export EMSK

 WPA and WPAZ2 certificates do not require EMSK
» \We can’t blame them because we did not define EMSK usages

Defining EMSK usages with expectation of support from all EAP
methods will create a serious deployment gap

— Industry may not use HOKEY if there is no smooth migration path

e e.g. 802.11i

In addition, a mechanism for enabling and bootstrapping each EMSK
usage is needed. However...

— Relying on pre-configuration is a bad idea

— Defining such a mechanism for every EAP method is also bad

— Defining such a mechanism in EAP lower layer could make the situation
even more worse

Gap Analysis: Channel Binding

 EAP keying identifies two Channel
Binding approaches:

— Binding based on a KDF
— Binding based on parameter exchange

e There is no EAP method that “actively”
supports Channel Binding

— The deployment bar is too high if Channel
Binding is required for each EAP method

EAP Facts

* EAP is not extensible without providing
backwards compatibility for itself
— No version field
— No extension header
— Silent discarding a message with a new Code
* |s there any way to add more functionalities to

EAP without coming up with EAPv2?

— Yes, by defining a new EAP method used for extending
EAP

— Basic backwards compatibility is provided with NAK

Design choices for a new EAP
method to extend EAP

e Sequencing in a single EAP conversation

— l.e., an authentication method followed by the new EAP method
followed by EAP-Success/Failure

— Sequencing multiple authentication methods (Types 4 and greater)
Is not allowed in RFC 3748 except inside a tunneling method
e Sequencing EAP conversations

— l.e., run an authentication method in an EAP conversation and then
start another EAP conversation with the new EAP

— Many lower layers do not support sequencing EAP conversations
to generate a single network access authorization

e Tunneling
— l.e., run an authentication method within the new EAP method
— Sounds like the most backwards-compatible way

EAP-EXT In a Nutshell

EAP-EXT provides capabilities exchange.

— Capabilities: re-authentication and channel binding. Other capabilities such as
handover keying can also be added

At least one EAP method (e.g., EAP-TLS) is run inside EAP-EXT for
authenticating the peer

After an inner method generates EAP keying material, exchanged capabilities
are protected

Even if capability negotiations fail, the peer is still authorized for network
access using the basic EAP functionality which is available now

It is allowed to run multiple authentication methods inside EAP-EXT with
cryptographic binding

— N-th auth method is protected with MSK from (N-1)-th auth method (Integrity
chaining)

EAP-EXT exports MSK and EMSK even if inner methods do not generate
EMSK

— (MSK,EMSK)=KDF(MSK _i, "EAP-EXT-EAP-Keying-Material", 128)
e« MSK i:MSK from the last successful inner method

Unprotected

Protected
(by AUTH TLV)

4

{

~

EAP-EXT Example
(single auth method)

EAP-Response/EXT{Cap.(R,C),PRF(1)}
CBM(1)}

EAP-Request/EXT{F,Cap.(R,C),PRF(1,2),Peer-1D,
Server-1D,Reauth-Key-Lifetime,
CBM(1,2).,CBD,AUTH}

Re-auth related parameters

Channel Binding parameters

PRF negotiation for EMSK

Server

Message Format

01234567890123456789012345678901
+—+—F—F—F—F—-F—F—F—F—F—-F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F+—F+—+
| Code | Ildentifier | Length |
+—+—+—+—F+—F+—F+—F—+—F+—F—-F+—F+—-F+—F+—F—F—F—F—F—F—F—F—F -+ L+ 4
| Type | Version IFIE] Reserved | Capabilities |
+—+—+—+—F—F—F+—F—F+—F—F—F—F—F—F—F—F—F—F -ttt b4
| TLV(s) (optional)
+—+—+—F+—F+—F+—F+—F—F+—F+—F+—-F+—F—-F+—F—-+—+-—

01234567
+

IRCrrrrrrj

F-bit indicates whether this is the final message from the sender

*E-bit indicates an error

«Capabilties: R-bit for re-authentication and C bit for Channel Binding]
*TLV/(s): See below

0] 1 2 3
012345678901 23456789012345678901
ettt —F—F—F—F—F—F—F—F—F—F—F—F—F —F —F—F—F—F —F —F —F —F —F—F —F —F -+ —+
| Type | Length |
ettt —F —F—F—F—F—F —F —F+—+
| Value ...
ettt —F—F—F—F—F—F —F—F—F—F = —F—

TLVs

 PRF TLV: contains a list of PRF algorithms for
USRK derivation

e Re-auth related TLVS
— Peer-ID TLV, Server-ID TLV, Reauth-Key-Lifetime
— Actual re-auth mechanism is not specified in this draft

e Channel Binding related TLVs

— Channel Binding Mechanism TLV: contains a list of
CB mechanisms

— Channel Binding Data TLV: contains parameters
specific to a CB mechanism (some CB mechanism does
not require this)

Additional work to be done

e Adda TLV for encrypting other TLVs

Summary

« Without addressing backwards compatibility
ISsues, Industry may not use new
functionalities relating to EAP, including
HOKEY

* This proposal addresses the backwards
compatibility issues and allows a smooth
migration path to HOKEY

	An EAP Method for Extending EAP(draft-ohba-hokey-emu-eap-ext-00.txt)
	Goal: Backwards Compatibility
	Gap Analysis: EMSK
	Gap Analysis: Channel Binding
	EAP Facts
	Design choices for a new EAP method to extend EAP
	EAP-EXT in a Nutshell
	EAP-EXT Example (single auth method)
	Message Format
	TLVs
	Additional work to be done
	Summary

