flow rate fairness dismantling a religion <<u>draft-briscoe-tsvarea-fair-00.pdf</u>>

Bob Briscoe Chief Researcher, BT Group IETF-67 Nov 2006

why the destructive approach? destruction will breed creation

- Internet resource allocation/accountability
 - 'needs fixing' status since the Internet's early days
- will never come off 'needs fixing' status
 - unless we discard an idea that predated the Internet
- fairness between flow rates (used in TCP fairness, WFQ)
 - proven bogus 9yrs ago, but (I think) widely misunderstood / ignored
 - fairness between flow rates still the overwhelmingly dominant ideology
 - obscured by this idea, we wouldn't know a bad fix from a good one
- resource allocation/accountability now 'being fixed'
 - e.g. Re-ECN: Adding Accountability for Causing Congestion to TCP/IP <<u>draft-briscoe-tsvwg-re-ecn-tcp-03.txt</u>>
 - this talk is not about the re-ECN protocol, but about why we need something like it
- can't build consensus unless people accept Internet has no fairness ctrl

You got to be careful if you don't know where you're going, because you might not get there [Yogi Berra]

exec summary

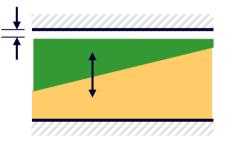
 fair allocation... of what?

among what?

× rate

✓ congestion

✓ bits, sent by users


- don't have to throw away everything we've engineered
 - only the ideology that created it
 - new mechanisms overarch existing TCP, WFQ etc
- don't have to throw away traditional flat pricing etc
 - new mechanisms use congestion pricing concepts internally
 - but as signals to hard engineered mechanisms
- can do fairness between fairnesses within sub-groups
 - NATO, commercial ISPs, universities, countries with social objectives
 - including what we have today as a sub-group

4

fairness and congestion control

congestion control dimensions

- utilisation how close to full
- fairness what share for each user
- stability dynamics

- can alter fairness independently of utilisation
 - e.g. XCP, opening multiple TCPs
- fairness nothing to do with functioning of network
 - there will always be an allocation
 - any allocation 'works'
- a social requirement on engineering

who should decide what fairness to have?

- certainly not the IETF
- candidates
 - governments
 - network owner (e.g. military, university, private, commercial)
 - market
- should be able to do all the above
 - IETF skill should be to 'design for tussle' [Clark, 2002]
 - basis of the design of re-ECN <<u>draft-briscoe-tsvwg-re-ecn-tcp-03</u>>
- currently the IETF does decide
 - based on an unsubstantiated notion of fairness between flow rates
 - which has no basis in real life, social science, philosophy or anything
 - this view isn't even complete enough to be a form of fairness

today's shares are just the result of a brawl

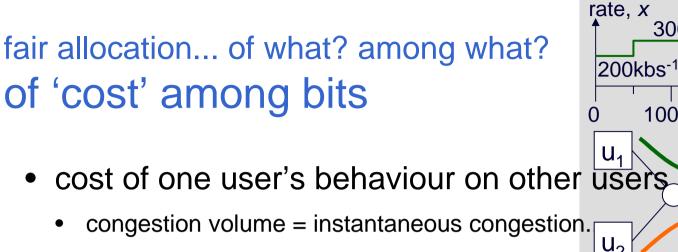
- flow rate fairness is not even wrong
 - it doesn't even answer the right questions
 - it doesn't allocate the right thing
 - it doesn't allocate between the right entities
- how do you answer these questions?
 - 1) how many flows is it fair for an app to create?
 - 2) how fast should a brief flow go compared to a longer lasting one?

1/2

1/4

1/4

of what? among whair? mealism SUIMMAN


6

fairness

is this important?

- working with packets depersonalises it
 - it's about conflicts between real people
 - it's about conflicts between real businesses
- 1st order fairness average over time
 - 24x7 file-sharing vs interactive usage
- 2nd order fairness instantaneous shares
 - unresponsive video streaming vs TCP
 - fair burden of preventing congestion collapse
- not some theoretical debate about tiny differences
 - huge differences in congestion caused by users on same contract
 - hugely different from the shares government or market would allocate
 - yes, there's a lot of slack capacity, but not that much and not for ever
- allocations badly off what a market would allocate
 - eventually lead to serious underinvestment in capacity
- 'do nothing' will not keep the Internet pure
 - without an architectural solution, we get more and more middlebox kludges

...shared proportionately over each user's bit rate

toy scenario

100ms 200ms

200kbs⁻¹

time, t

450kbps

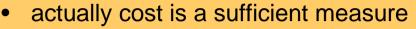
300kbs⁻¹

U₁

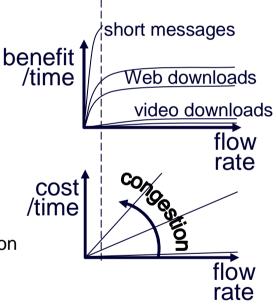
[†]300kbs⁻¹

- ...over time
- instantaneous congestion
 - 10% p =
- congestion volume, $v = x(t) \Delta t.p(t)$

 $v_1 = 200 \text{kbs}^{-1} \text{ x 50ms x 10\%} + 300 \text{kbs}^{-1} \text{ x 200ms x 10\%}$


1kb 6kb = 7kb+

 $v_2 = 300$ kbs⁻¹ x 50ms x 10% + 200kbs⁻¹ x 200ms x 10%


4kb = 5.5kb1.5kb toy scenario for mustration only; strictly... • a super-linear marking algorithms to determine p is preferable for control stability • the scenario assumes we're starting with full buffers • as $\Delta t \rightarrow \delta t$. Integrates easily & correctly over time and

fair allocation... of what? not rate

- what discipline deals with fairness?
 - political economy (supported by philosophy)
- fairness concerns shares of
 - benefits (utility), costs or both
- benefit ≠ flow rate
 - users derive v different benefit per bit from each app
- cost ≠ flow rate
 - cost of building network covered by subscriptions
 - cost to other users depends on congestion
 - no cost to other users (or network) if no congestion
 - very different costs for same flow rate with diff congestion
- "equal flow rates are fair"?
 - no intellectual basis: random dogma
- even if aim were equal benefits / costs
 - equal flow rates would come nowhere near achieving it

- for a free market to maximise benefits
- or to bring about other forms of fairness

ileinness

of what?

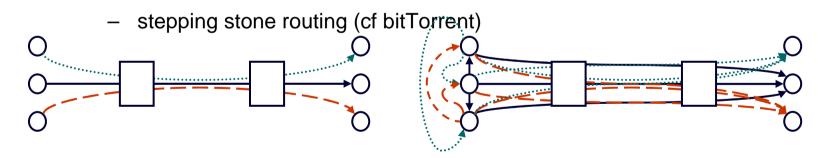
annong Mynair?

mealism

VIBUUUUUS

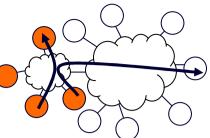
fair allocation... among what? not flows

- we expect to be fair to people, institutions, companies
 - 'principals' in security terms
- why should we be fair to transfers between apps?
 - where did this weird argument come from?
 - like claiming food rations are fair if the boxes are all the same size
 - irrespective of how many boxes each person gets
 - or how often they get them
- max-min-, proportional-, TCP- fairness of flow rates
 - not even in same set as weighted proportional fairness*
 - flow A can go *w* times as fast as B
 - hardly a useful definition of fairness if A can freely choose w
 - interesting part is what regulates A's choice of w
- flow rates & their weights are an outcome of a deeper level of fairness
 - congestion cost fairly allocated among bits (RED algorithm)


^{*} XCP, for example, makes this common mistake

fair allocation... over time

- users A & B congest each other
 - then A & C cause similar congestion, then A & D...
 - is it fair for A to get equal shares to each of B, C & D each time?
- in life fairness is not just instantaneous
 - even if Internet doesn't always work this way, it must be able to
 - efficiency and stability might be instantaneous problems, but not fairness
- need somewhere to integrate cost over time (and over flows)
 - the sender's transport is the natural place
- places big question mark over router-based fairness (e.g. XCP)
 - at most routers data from any user might appear
 - each router would need per-user state
 - and co-ordination with every other router


enforcement of fairness

- if it's easy to 'cheat', it's hardly a useful fairness mechanism
 - whether intentionally or by innocent experimentation
- if every flow gets equal rate
 - the more flows you split your flow into, the more capacity you get
 - fairness per source-destination pair is no better
 - Web/e-mail hosting under one IP addr

• by design cost allocation among *bits* is immune to such cheating

fairness between fairnesses

- to isolate a subgroup who want their own fairness regime between them
 - must accept that network between them also carries flows to & from other users
- in life, local fairnesses interact through global trade
 - e.g. University assigns equal shares to each student
 - but whole Universities buy network capacity from the market
 - further examples: governments with social objectives, NATO etc
- cost fairness sufficient to support allocation on global market
 - then subgroups can reallocate the right to cause costs within their subgroup
 - around the edges (higher layer)
 - naturally supports current regime as one (big) subgroup
 - incremental deployment
- different fairness regimes will grow, shrink or die
 - determined by market, governments, regulators, society around the edges
 - all just congestion marking at the IP layer neck of the hourglass

religion politics legal commercial app transport network link physical

simple, practical & realistic steps towards architectural change

- need MuITCP or equiv on sender
 - & (rough) policy control of flow weights
- could have deployed MuITCP in the trust climate of the '80s
 - today, too dangerous to offer an API controlling an app's own flow weight
 - tho apps already open multiple flows
- re-ECN: a change to IP
 - evolutionary pressure on transports
 - **IP sender** has to mark at least as much congestion as emerges at the receiver
 - networks use these markings to gradually tighten fairness controls
 - weighted **sender transports** evolve
 - receiver transports evolve that can negotiate weighting with sender

- propose to use last reserved bit in IPv4 header
- in return re-ECN enables
 - fairness
 - choice of fairness regimes
 - robustness against cheating
 - incremental deployment with strong deployment incentives
 - a natural mitigation of DDoS flooding
 - differentiated QoS
 - safe / fair evolution of new cc algs
 - DCCP, hi-speed cc etc.
 - policing TCP's congestion response for those hooked on per flow fairness

iaimess

of what?

among whair?

realism

VIBUUUNS

conclusions

- we have nothing to lose but an outdated dogma
 - we can keep everything we've engineered, and traditional pricing
 - but no-one should ever again claim fairness based on flow rates
 - unless someone can give a rebuttal using a respected notion of fairness from social science
- this is important conflicts between real people / businesses
- TCP, WFQ etc are insufficient to control fairness
 - we have freedom without any form of fairness at all
 - rate is absolutely nothing like a measure of fairness
 - being fair to flows is as weird as talking to vegetables
 - not considering fairness over time is a huge oversight
- Kelly's weighted proportional fairness explained this in 1997
- re-ECN makes this underlying 'cost fairness' practical
 - networks can regulate congestion with engineering, rather than pricing
- sub-groups can assert different fairness regimes at higher layers
 - 'freedom without fairness' can then prove itself by natural selection

flow rate fairness dismantling a religion <<u>draft-briscoe-tsvarea-fair-00.pdf</u>>

•<u>spare slides:</u> illustrations of problems with rate fairness: - TFRC

- max-min why cost fairness, not benefit fairness calibrating 'cost to other users'

illustration: TCP-friendly rate control (TFRC) problems with rate fairness <u>congestion</u>

- TCP-friendly
 - same ave rate as TCP
 - congestion response can be more sluggish
- compared to TCP-compatible
 - higher b/w during high congestion
 - lower b/w during low congestion
- giving more during times of plenty doesn't compensate for taking it back during times of scarcity
- TCP-friendly flow causes more congestion volume than TCP
- need lower rate if trying to cause same congestion cost

• compared to the broken per flow notion common to both

illustration: max-min rate fairness problems with rate fairness

- max-min rate fairness
 - maximise the minimum share
 - then the next minimum & so on
- if users take account of the congestion they cause to others
- max-min rate fairness would result if all users' valuation of rate were like the sharpest of the set of utility curves shown [Kelly97]
 - they all value high rate exactly the same as each other
 - they all value very low rate just a smidgen less
 - ie, they are virtually indifferent to rate

utility

flow rate

- users aren't that weird
- .: max-min is seriously unrealistic

fair allocation... of what? why cost fairness, not benefit fairness?

- two electricity users
 - one uses a unit of electricity for a hot shower
 - next door the other uses a unit for her toast
- the one who showered enjoyed it more than the toast
 - should she pay more?
- in life, we expect to pay only the cost of commodities
 - a competitive market drives the price to cost (plus 'reasonable' profit)
 - if one provider tries to charge above cost, another will undercut
- cost metric is all that is needed technically anyway
 - if operator does charge by value (benefit), they're selling snake-oil anyway
 - don't need a snake-oil header field

calibrating 'cost to other users'

congestion volume

- both a measure of 'cost to other users'
- and a measure of traffic not served
- a monetary value can be put on 'cost to other users'
 - the cost of upgrading the network equipment
 - so that it wouldn't have dropped (or marked) the volume it did
- only applies in a competitive market
 - or some other welfare maximising 'invisible hand'