A Filter Rule Mechanism for Multi-access Mobility

draft-larsson-monami6-filter-rules-01.txt

Conny Larsson

Henrik Levkowetz

Tero Kauppinen

Heikki Mahkonen

(heikki.mahkonen@ericsson.com)

Problem Overview

About Policy:

- Policies can be defined by both the initiator and responder.
- Policies are described in an abstract high level "language" and influence for instance which interface to use given the current state of the node.
- Policies could either be pre-installed in the node or distributed dynamically in runtime.
- Policies are generally asymmetric, i.e. two communicating nodes do not need to have the same set of policies.

Filter Rules:

- Filer rules can be defined by both the initiator and responder.
- Filter rules could either be pre-installed in the node or distributed dynamically in runtime.
- Filter rules are typically created when an event occurs, e.g. at the launch of applications.
- Filter rules may be useful not only for MIPv6 (Monami6) but also for MIPv4, HIP and possibly SHIM6 and other protocols.

Mobility Management:

- Mobility Management signaling is used to bind and rebind filter rules to the recipient entity (i.e. care-of address) in the stack.
- Used when the available access types are changed in a node.

Scope for draft-larsson-monami6-filter-rules:

- Defines a filter rule transfer mechanism.
- Defines a Filter Interface Identifier (FIID)

2

- A filter consists of a set of filter rules
- Filter rules:
 - Each filter rule is associated with a Filter Interface Identifier (FIID).
 - The filter rule definition language is OpenBSD's Packet Filter.
 - A filter rule operates on individual packets, and is used to capture the notion of generalized flows.
 - Filter rules may be defined by both the mobile node and the network side.
 - Filter rules could either be static (i.e. preconfigured) or dynamically defined,
 e.g. when an application opens a socket.
 - Applications can dynamically define filter rules for a specific traffic flow.

3

The set of filter rules should exist on both sides.

Packet Format

- The protocol used to distribute the filter rules is UDP
- The filter rules are stored in ASCII text format (PF Payload)
- The transfer mechanism is bi-directional
 - i.e. both involved nodes are able to modify the filter rules
- PF Update includes the entire packet filter specification
 - Optimizations possible but not defined in current version.
- Two messages are defined:
 - Packet Filter Update
 - Packet Filter Acknowledgement

Two levels of indirection when mapping FIID to BID

Updates to the filter rules are independent of the binding between FIID and BID Example 1: New filter rule created, e.g. when an application opens a socket.

5

Two levels of indirection when mapping FIID to BID

Updates to the filter rules are independent of the binding between FIID and BID Example 2: A new physical interface is added.

Existing interfaces: Filter Rule 1 BID-1 FIID1 Filter Rule 2 Filter Rule 3 FIID2 A new interface is Filter Rule 1 FIID1 BID-1 activated: Filter Rule 2 Filter Rule 3 FIID2 BID-2

6

The binding between FIID and BID must be updated, however, the set of filter rules does not have to be updated.

Summary

- Policy, filter rule and mobility management are separate issues and should be handled by separate protocols.
- The proposed protocol is independent of the mobility protocol.
 - It works equally well for MIPv6, MIPv4, HIP and other mobility protocols.
- IP version agnostic since it's built on UDP.
- Bi-directional, e.g., in MIP either the MN or the HA may send filter rule updates.

7