
Jonathan Rosenberg
Cisco Systems

Interactive Connectivity
Establishment: ICE

Note Well
Any submission to the IETF intended by the Contributor for publication as all
or part of an IETF Internet-Draft or RFC and any statement made within the
context of an IETF activity is considered an "IETF Contribution". Such
statements include oral statements in IETF sessions, as well as written and
electronic communications made at any time or place, which are addressed to:

• the IETF plenary session,
• any IETF working group or portion thereof,
• the IESG, or any member thereof on behalf of the IESG,
• the IAB or any member thereof on behalf of the IAB,
• any IETF mailing list, including the IETF list itself, any working group or design

team list, or any other list functioning under IETF auspices,
• the RFC Editor or the Internet-Drafts function

All IETF Contributions are subject to the rules of RFC 3978 (updated by RFC
4878) and RFC 3979. Statements made outside of an IETF session, mailing list
or other function, that are clearly not intended to be input to an IETF activity,
group or function, are not IETF Contributions in the context of this notice.
Please consult RFC 3978 (updated by RFC 4878) for details.

Ground Rules
• If you take lunch, please get $10 to me before Friday

noon
– I am picking up the cost of this and will pay the difference for

freeloaders!
• Lunch is arriving shortly – when it comes, QUIETLY go

and grab – tutorial will be in progress during this
• This is a TUTORIAL, not a normal working group

meeting
– Goal is education, not argumentation
– Hecklers and complainers, please hold your tongues

• Questions are welcome and encouraged
– No question is too dumb
– I will assume very limited SIP/SDP/NAT/ICE knowledge

Talk Outline

• NAT Traversal Problem Statement
• ICE Overview

What is NAT?
• Network Address

Translation (NAT)
– Creates address binding

between internal private and
external public address

– Modifies IP Addresses/Ports
in Packets

– Benefits
• Avoids network renumbering

on change of provider
• Allows multiplexing of

multiple private addresses
into a single public address
($$ savings)

• Maintains privacy of internal
addresses

Client
N
A
T

N
A
T

S: 1.2.3.4:8877
D: 67.22.3.1:80

Binding Table

Internal External
10.0.1.1:6554 -> 1.2.3.4:8877

S: 10.0.1.1:6554
D: 67.22.3.1:80

IP Pkt IP Pkt

Why is this bad for SIP?
• Client will generate SIP

INVITE and 200 OK
responses with private
addresses
– In the SDP as the target for

receipt of media
– In the Contact of a REGISTER

as the target for incoming
INVITE

– In the Via of a request as the
target for the response

• Recipient will not be able to
send packets to this private
address
– Media is discarded
– Incoming calls are not delivered
– Responses are not received

Client
N
A
T

INVITE

Send media to
10.0.1.1:8228

Why is this bad for SIP?
• Client will generate SIP

INVITE and 200 OK
responses with private
addresses
– In the SDP as the target for

receipt of media
– In the Contact of a REGISTER

as the target for incoming
INVITE

– In the Via of a request as the
target for the response

• Recipient will not be able to
send packets to this private
address
– Media is discarded
– Incoming calls are not

delivered
– Responses are not received

Client
N
A
T

INVITE

Send media to
10.0.1.1:8228

Hardest problem,
solved by ICE

Solved by SIP
Outbound

Solved by rport
(RFC 3581)

What about the obvious
solution?

• The NAT rewrites source IP
of SIP packet, but not
contents

• Why not have NAT rewrite
the contents of the SIP
packet also (Application
Layer Gateway (ALG))?

• Numerous big problems
– Requires SIP security

mechanisms to be disabled
– Hard to diagnose problems
– Requires network upgrade in

all NAT
– Frequent implementation

problems
– Incentives mismatched
– Anathema to the concept of

the Internet

Client

N
A
T

INVITE

Send media to
1.2.3.4:6290

INVITE

Send media to
10.0.1.1:8228

S: 10.0.1.1:6554
D: 67.22.3.1:80

S: 1.2.3.4:8877
D: 67.22.3.1:80

Binding Table

Internal External
10.0.1.1:6554 -> 1.2.3.4:8877
10.0.1.1:8228 -> 1.2.3.4:6290

IETFs Answer: Interactive
Connectivity Establishment (ICE)

1. ICE makes use of Simple
Traversal Underneath NAT
(STUN) and Traversal Using
Relay NAT (TURN)

2. ICE is a form of p2p NAT
traversal

3. ICE only requires a network to
provide STUN and TURN
servers

4. ICE allows for media to flow
even in very challenging
network conditions

5. ICE can make sure the phone
doesn’t ring unless media
connectivity exists

6. ICE dynamically discovers the
shortest path for media to
travel between endpoints

7. ICE has a side effect of
eliminating a key DoS attack
on SIP (Voice Hammer)

8. ICE works through nearly any
type of NAT and firewall

9. ICE does not require the
endpoint to discover the NATs,
their type, or their presence

10. ICE only uses relays in the
worst case – when BOTH sides
are behind symmetric NAT

Top 10 ICE Facts

ICE History and Timeline

Feb 2003:
First ICE draft

October 2003:
ICE adopted as
mmusic work
item in IETF

July 2005:
Ice-05 major redesign
to deal with middleboxes

August 2006:
ICE-10 major
redesign for simplicity

Nov/Dec 2006
ICE sent to
IESG for
approval (?!)

October 2006
ICE-12 adds “gateway
mode” to help deployment

The ICE 9-Step Program to
Recovery

• Step 1: Allocation

• Step 2: Prioritization

• Step 3: Initiation

• Step 4: Allocation

• Step 5: Information

• Step 6: Verification

• Step 7: Coordination

• Step 8: Communication

• Step 9: Confirmation

ICE Step 1: Allocation
• Before Making a Call,

the Client Gathers
Candidates

• Each candidate is a
potential address for
receiving media

• Three different types
of candidates
– Host Candidates
– Server Reflexive

Candidates
– Relayed Candidates

Relay

Host
Candidates reside
on the agent itself

Server Reflexive
candidates
are addresses residing
on a NAT

NAT

NAT

Relayed candidates
reside on a host acting
as a relay towards the
agent

Using STUN to Obtain
Candidates

• Server reflexive and relayed
candidates are learned by
talking to a STUN server
using the Relay Usage

• Client sends query to STUN
relay server

• Query passes through NAT,
creates bindings

• STUN relay server allocates
a relayed address and also
reports back source address
of request to client
– This will be the server reflexive

address

STUN
Server

1.2.3.4:1000NAT

NAT

12.13.14.15:8200

10.0.1.1:500

Allocate
Request

Allocate
Response
reflexive=1.2.3.4:1000
relayed=12.13.14.15:8200

Components and Media Streams

• Certain types of media streams require multiple
IP addresses and ports
– Primary example: RTP and RTCP

• Consequently, each media stream is said to
have a certain number of components
– Two for RTP

• Each component has a component-ID
– RTP = 1
– RTCP = 2

• Each candidate is associated with a particular
component

Pacing of Allocations

• If a client has
– Multiple interfaces
– Multiple IP address

versions
– Multiple STUN servers
– Multiple media streams
– Multiple components

• This can produce a lot of
allocation traffic

• Two problems
– Network congestion
– NAT Overload

• NAT Overload has
been reported in the
wild – NATs fail to
maintain bindings
when created too fast

• For this reason, ICE
paces allocations at 1
transaction every
20ms

ICE Step 2: Prioritization

• Type-Preference: Preference for type (host, server reflexive,
relayed)
– Usually 0 for relayed, 126 for host

• Local Preference: Amongst candidates of same type, preference for
them
– If host is multihomed, preference by interface
– If host has multiple STUN servers, preference for that server

• Component ID as described previously
• This algorithm is only SHOULD strength

priority = (2^24)*(type preference)
+(2^8)*(local preference)
+(2^0)*(256 - component ID)

Local Preference Component IDType Preference 32 bits

Visualization: Priority Space

Host
Candidates

Server
Reflexive

Candidates

65535

Interface 1

Interface 2

RTP

RTCP

Encoding the Offer
• Each candidate is

placed into an
a=candidate attribute
of the offer

• Each candidate line
has
– IP address and port
– Component ID
– Foundation
– Transport Protocol
– Priority
– Type
– “Related Address”

v=0
o=jdoe 2890844526 2890842807 IN IP4
10.0.1.1
s=
c=IN IP4 192.0.2.3
t=0 0
a=ice-pwd:asd88fgpdd777uzjYhagZg
a=ice-ufrag:8hhY
m=audio 45664 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=candidate:1 1 UDP 2130706178 10.0.1.1
8998 typ local
a=candidate:2 1 UDP 1694498562 192.0.2.3
45664 typ srflx raddr 10.0.1.1 rport 8998

Encoding the Offer
• Each candidate is

placed into an
a=candidate attribute
of the offer

• Each candidate line
has
– IP address and port
– Component ID
– Foundation
– Transport Protocol
– Priority
– Type
– “Related Address”

v=0
o=jdoe 2890844526 2890842807 IN IP4
10.0.1.1
s=
c=IN IP4 192.0.2.3
t=0 0
a=ice-pwd:asd88fgpdd777uzjYhagZg
a=ice-ufrag:8hhY
m=audio 45664 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=candidate:1 1 UDP 2130706178 10.0.1.1
8998 typ local
a=candidate:2 1 UDP 1694498562 192.0.2.3
45664 typ srflx raddr 10.0.1.1 rport 8998

Encoding the Offer
• Each candidate is

placed into an
a=candidate attribute
of the offer

• Each candidate line
has
– IP address and port
– Component ID
– Foundation
– Transport Protocol
– Priority
– Type
– “Related Address”

v=0
o=jdoe 2890844526 2890842807 IN IP4
10.0.1.1
s=
c=IN IP4 192.0.2.3
t=0 0
a=ice-pwd:asd88fgpdd777uzjYhagZg
a=ice-ufrag:8hhY
m=audio 45664 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=candidate:1 1 UDP 2130706178 10.0.1.1
8998 typ local
a=candidate:2 1 UDP 1694498562 192.0.2.3
45664 typ srflx raddr 10.0.1.1 rport 8998

Encoding the Offer
• Each candidate is

placed into an
a=candidate attribute
of the offer

• Each candidate line
has
– IP address and port
– Component ID
– Foundation
– Transport Protocol
– Priority
– Type
– “Related Address”

v=0
o=jdoe 2890844526 2890842807 IN IP4
10.0.1.1
s=
c=IN IP4 192.0.2.3
t=0 0
a=ice-pwd:asd88fgpdd777uzjYhagZg
a=ice-ufrag:8hhY
m=audio 45664 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=candidate:1 1 UDP 2130706178 10.0.1.1
8998 typ local
a=candidate:2 1 UDP 1694498562 192.0.2.3
45664 typ srflx raddr 10.0.1.1 rport 8998

Foundation is the same for all candidates
Of the same type, from the same interface
And STUN server. Used as part of the Frozen
algorithm (later)

Encoding the Offer
• Each candidate is

placed into an
a=candidate attribute
of the offer

• Each candidate line
has
– IP address and port
– Component ID
– Foundation
– Transport Protocol
– Priority
– Type
– “Related Address”

v=0
o=jdoe 2890844526 2890842807 IN IP4
10.0.1.1
s=
c=IN IP4 192.0.2.3
t=0 0
a=ice-pwd:asd88fgpdd777uzjYhagZg
a=ice-ufrag:8hhY
m=audio 45664 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=candidate:1 1 UDP 2130706178 10.0.1.1
8998 typ local
a=candidate:2 1 UDP 1694498562 192.0.2.3
45664 typ srflx raddr 10.0.1.1 rport 8998

Only UDP defined in ICE-12.
Draft-ietf-mmusic-ice-tcp
defines several TCP types and TLS

Encoding the Offer
• Each candidate is

placed into an
a=candidate attribute
of the offer

• Each candidate line
has
– IP address and port
– Component ID
– Foundation
– Transport Protocol
– Priority
– Type
– “Related Address”

v=0
o=jdoe 2890844526 2890842807 IN IP4
10.0.1.1
s=
c=IN IP4 192.0.2.3
t=0 0
a=ice-pwd:asd88fgpdd777uzjYhagZg
a=ice-ufrag:8hhY
m=audio 45664 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=candidate:1 1 UDP 2130706178 10.0.1.1
8998 typ local
a=candidate:2 1 UDP 1694498562 192.0.2.3
45664 typ srflx raddr 10.0.1.1 rport 8998

Encoding the Offer
• Each candidate is

placed into an
a=candidate attribute
of the offer

• Each candidate line
has
– IP address and port
– Component ID
– Foundation
– Transport Protocol
– Priority
– Type
– “Related Address”

v=0
o=jdoe 2890844526 2890842807 IN IP4
10.0.1.1
s=
c=IN IP4 192.0.2.3
t=0 0
a=ice-pwd:asd88fgpdd777uzjYhagZg
a=ice-ufrag:8hhY
m=audio 45664 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=candidate:1 1 UDP 2130706178 10.0.1.1
8998 typ local
a=candidate:2 1 UDP 1694498562 192.0.2.3
45664 typ srflx raddr 10.0.1.1 rport 8998

Encoding the Offer
• Each candidate is

placed into an
a=candidate attribute
of the offer

• Each candidate line
has
– IP address and port
– Component ID
– Foundation
– Transport Protocol
– Priority
– Type
– “Related Address”

v=0
o=jdoe 2890844526 2890842807 IN IP4
10.0.1.1
s=
c=IN IP4 192.0.2.3
t=0 0
a=ice-pwd:asd88fgpdd777uzjYhagZg
a=ice-ufrag:8hhY
m=audio 45664 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=candidate:1 1 UDP 2130706178 10.0.1.1
8998 typ local
a=candidate:2 1 UDP 1694498562 192.0.2.3
45664 typ srflx raddr 10.0.1.1 rport 8998

Optional information. For relayed
candidates, gives the server reflexive.
For server reflexive, gives the host.

ICE Step 3: Initiation

• Caller sends a SIP
INVITE as normal

• No ICE processing by
proxies

• SIP itself traverses
NAT using SIP
outbound and rport

SIP
Proxy

INVITE

ICE Step 4: Allocation
• Called party does

exactly same
processing as caller
and obtains its
candidates

• Recommended to not
yet ring the phone!

STUN
Server

NAT

NAT

Allocate
Request

Allocate
Response

ICE Step 5: Information

• Caller sends a provisional
response containing its
SDP with candidates and
priorities
– Can also happen in 2xx,

but this flow is “best”

• Provisional response is
periodically retransmitted

• As with INVITE, no
processing by proxies

• Phone has still not rung
yet

SIP
Proxy

1xx

Reliability without PRACK
• ICE allows an

optimization for reliable
1xx without PRACK!

• Answerer retransmits 18x
as if PRACK was being
used

• However, when it
receives STUN Binding
Request, ceases
retransmits
– Positive indication of

receipt of 18x by offerer!
• Admittedly kind of hoakey

– using media path
message to influence SIP
state machinery Offerer Answerer

183

STUN Request

STUN Response

183

183

Stop
18x
retransmits

ICE Step 6: Verification
• Each agent pairs up its

candidates (local) with its peers
(remote) to form candidate pairs

• Each agent sends a connectivity
check every 20ms, in pair priority
order
– Binding Request from the local

candidate to the remote
candidate

• Upon receipt of the request the
peer agent generates a response
– Contains a mapped address

indicating the source IP and port
seen in the request

• If the response is received the
check has succeeded

STUN
Server

NAT

NAT

STUN
Server

NAT

NAT

1

2

3

4
5

Authenticating STUN
• STUN Connectivity checks

are authenticated and
integrity protected

• Authentication is based on a
username and password

• Username is constructed by
combining username
fragments exchanged in
offer and answer separated
by colon

• Password is exchanged in
offer/answer

• Username and password
are same for all candidates
in a media stream

SIP
ProxyOffer

Ufrag: AUF
Password:APASS

Answer
Ufrag: BUF
Password:BPASS

Username: BUF:AUF
Password: BPASS

Username: AUF:BUF
Password: APASS

Stun requests

Pairing up Candidates

• Pairs are sorted in order of decreasing pair priority
• Each agent will end up with the same list
• Last term serves as a tie breaker
• Min/Max results in highest priority for pair with two host

RTP candidates, lowest for pair with two relayed RTCP

pair priority = 2^32*MIN(O-P,A-P) + 2*MAX(O-P,A-P) + (O-P>A-P?1:0)

Minimum Priority Maximum Priority 64 bits

O-P: Offerers Priority
A-P: Answerers Priority

Frozen Algorithm
• ICE provides an optimization called the Frozen algorithm
• Applicable when checks need to be done for RTP and

RTCP, or when there is multimedia
• Main idea is to use the results of a previous check to

predict the likelihood of a future one working
• Basic algorithm

– First, check the RTP candidate pairs for the audio stream
– Once one succeeds, then check the similar RTCP candidate
– If that succeeds, then check the RTP and then RTCP for similar

candidates for video
– Candidates are similar when they are of the same type and

obtained from the same interface and STUN server
• Same foundation

Visualizing Frozen Algorithm

Host
Candidates

Server
Reflexive

Candidates

9999

8999

Interface 1

Interface 2

RTP

RTCP

Pairs containing the red candidate pairs
Will be Waiting, all others Frozen

Visualizing Frozen Algorithm

Host
Candidates

Server
Reflexive

Candidates

9999

8999

Interface 1

Interface 2

RTP

RTCP

Check on interface succeeds
(in Green). RTCP for same foundation
is now Waiting to go and will be done
next

Peer Reflexive Candidates
• Connectivity checks can

produce additional
candidates
– Peer reflexive candidates

• Typically happens when
there is a symmetric NAT
between users

• Peer reflexive candidate
will be discovered by both
users
– For user A, from the

Response
– For user B, from the

Request
• Allows direct media even

in the presence of
symmetric NAT!

Sym
NAT

NAT allocates
new binding
towards B

STUN Request

STUN Response

A B

B informs A of
new binding

A learns a new
local

candidate
towards B!

ICE Step 7: Coordination

• ICE needs to finalize on a candidate pair
for each component of each media stream
– More than one may work

• Each agent needs to conclude on the
same set of pairs

• Finalization takes place without SIP
signaling – all through STUN

Agent Roles

• One agent acts as the controlling agent,
the other as the passive agent

• Controlling agent is normally the offerer,
unless offerer signals it only supports
passive role (see later)

• Controlling agent responsible for
– Deciding when STUN checks should finish
– Deciding which pairs to use once it is finished

Why not just use the first pair?

• ICE checks proceed in priority order
– So why not just stop once the first check

succeeds, and use that?

• Several reasons
– Packet loss on a higher priority check may

delay it from finishing – giving checks more
time may produce better results

– An agent may have other criteria for choosing
pairs (for example – RTT estimates!)

Signaling Completion
• When controlling agent is

done, it inserts a flag into
a STUN check

• If passive agent had
successfully completed a
check in reverse
direction, it stops checks
for that component of that
stream

• Both agents use the pair
generated by the check
that included the flag

• When ‘done’ – ring the
phone!

Controlling Passive

STUN Request+
flag

STUN Response

STUN Request

STUN Response

done

ICE for Gateways
• ICE Supports a modality

known as “passive-only”
• Used for endpoints that

always have public IP
– PSTN gateways
– Media servers
– Conference servers

• These endpoints need to
run ICE for ICE to be
used, but don’t
themselves have a “NAT
problem”

• An agent signals its
“passive-only” in SDP

• If both agents are
“passive-only” ICE is not
used at all

• A passive agent has a
single candidate (host
only) and only needs to
– Receive a STUN check

and send a response
– Generate “triggered

checks” in the reverse
direction

– No state machinery or pair
priorities or anything else

ICE Step 8: Communication

• Media can flow in
each direction once
pairs have been
selected by the
controlling agent for
each component

• Allows “early media”
in both directions

STUN
Server

NAT

NAT

STUN
Server

NAT

NAT

ICE Step 9: Confirmation

• 200 OK and ACK work
as normal
– 200 mirrors SDP from

provisional
• If m/c-line in original

INVITE didn’t match
candidate pairs selected
by ICE, controlling agent
does a re-INVITE to
place them in m/c-line

• Re-INVITE ensures that
‘middleboxes’ have the
correct media address
– QoS installation (i.e., IMS

or Packetcable)
– Diagnostic tools
– Monitoring applications
– Firewalls

Offerer Answerer

Re-INVITE

200 OK

200 OK

ACK

ACK

Questions?

