OATH Provisioning Sub-group Requirement-Provisioning Protocol Matrix Updated: October 30, 2006

Mandatory Requirements

Requirements		CT-KIP (all variants)	DSKPP
1.	Web services protocol (or XML-based)	Yes	Yes
2.		Partial ¹	Yes
3.	Allows for different credential types including vendor- specific credential formats	Yes	Yes ²
4.	Allows for multiple credential provisioning to the same device (uniquely identifiable)	Yes	Yes
5.	Supports password-based encryption (e.g., soft tokens)	Yes	Yes
6.		Yes	Yes
7.	Supports pre-shared key encryption (e.g., smart cards/SIM)	Yes	Yes
8.	Supports server-generated key delivery	Yes	Yes
9.		Yes	No
10.	Does not rely on transport level encryption (e.g., TLS) for seed protection	Yes	Yes
11.	Supports OTA delivery to mobile devices (for soft token app or SIM)	Yes	Yes
12.	Supports Internet delivery to PC/USB.	Yes	Yes
	Supports credential renewal on existing token/device (same or new token ID, new key)	Yes	Yes ³
14.	Supports credential expiration (allowing for token licensing based on time).	Yes	Yes ⁴
15.	Supports credential replacement in case of stolen/lost device	Yes	Yes
16.	Supports user authentication prior to provisioning	Yes ⁵	Yes
	Supports device authentication (based on device cert)	Yes ⁶	Yes ⁷
18.	Extensible to support new algorithm specific configuration data (OATH HOTP, OCRA, SecurID and others)	Yes	Yes ⁸

¹ CT-KIP is capable of handling PSKC through extension payload.

² Supported via PSKC extensions for vendor-specific algorithms under OTP type.

³ The current draft allows for credential renewal using either a new token ID or keeping the existing ID (allows for flexibility in implementation).

⁴ When PSKC is used for the credential payload

⁵ CT-KIP user authentication handled through initial user authentication followed by a trigger message containing a nonce which then is part of the ClientHello [rsa].

⁶ 4-pass supports implicit device authentication through the shared key variant (no other device than the one with the key will get access to the credential). Also, Internet-Draft <u>http://www.ietf.org/internet-drafts/draft-doherty-ct-kip-ws-00.txt</u> suggests an alternative mechanism for doing device client authentication.

⁷ Supported via device certificate.

⁸ Algorithm-specific data can be added to DSKPP (for request) and PSKC (for response/payload).

19. Allows client to specify device capabilities and preferences in requests	Yes	Yes
20. Allows server to deliver user interface attributes in response (e.g. logo)	Yes	Yes
21. Negotiation of supported/desired key types	Yes	Yes
22. Negotiation of MAC algorithms	Yes	No ⁹
23. Negotiation of Encryption algorithms	Yes	Yes

Desirable Requirements

Requirement	CT-KIP	DSKPP
	(all variants)	
24. Supports token deletion and notification to server	No	No
 Supports credential transfer from one device to another (device upgrade). 	No	No
 Support device confirmation to server upon credential delivery. 	No	No
27. Key validation option upon credential delivery.	Yes ¹⁰	No ¹¹
28. Allow for trigger message to couple previous browsing session to start of protocol	Yes ¹²	No
29. HTTP binding	Yes	Partial ¹³

⁹ MAC algorithm negotiation to be supported in next draft.
¹⁰ Yes for 4-pass as server's message confirms it uses the same credential as the client. In two and one-pass CT-KIP, there is key confirmation from the server due to the K_MAC being sent wrapped with K_TOKEN. 4-pass CT-KIP should be changed in a similar manner.
¹¹ Currently viewed as not in scope of protocol – could be added.
¹² Yes for CT-KIP 4- and 2-pass, N/A for 1-pass.
¹³ Supports simple http binding, but without defining a new header type.