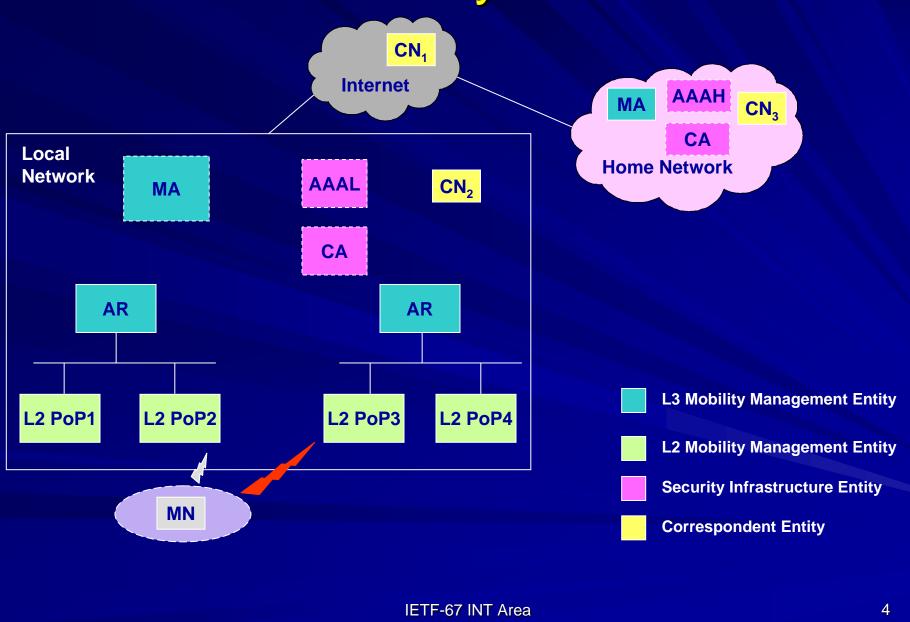
IP Mobility: Threat Models and Security Requirements

Vidya Narayanan (vidyan@qualcomm.com) Lakshminath Dondeti (Idondeti@qualcomm.com)


Outline

- Introduction and Goals
- Typical network architecture
- Assets
- Internet Threat Model A Recap
- Routing and IP Mobility
- Security analysis of IP mobility protocols
- Security Requirements
- Security Models

Introduction and Goals

- IP Mobility handles changes to the IP point of presence (PoP)
 - Forwards packets meant for an "anchor" IP address to a "transient" IP address
 - Several models (global, local, host-based, network-based)
- Aid analysis of threat models for IP mobility protocols
- Remove the guesswork in threats
- Provide high level security requirements for IP mobility protocols
- Allow evaluation of a security solution

Overall Mobility Architecture

Definitions

Mobility Agent

- Entity maintaining state on location of mobile nodes
 - E.g., MIP HA, FMIP pAR, HMIP MAP, NETLMM LMA, MIP RO-enabled CN

Mobility Facilitators

- Other entities that facilitate IP mobility
 - E.g., NETLMM MAG, MIP4 FA, HMIP AR
- It is plausible for these to fail/be compromised without denial of service

Mobility Provider

Mobility Agent or Mobility Facilitator

Mobility Recipient

- Entity receiving the IP mobility service
- Mobile node is the recipient

Assets

Critical Assets

- Failure/compromise of these assets leads to failed mobility sessions

- Mobile Node
- Mobility Agent
- Security Infrastructure Entities

Non-critical Assets

- The mobility session can continue despite failure/compromise of these assets
 - Network infrastructure, including links
 - Mobility facilitators (e.g., ARs, routers)

Other Assets

- Correspondent Nodes
- Other nodes (mobile or fixed) attaching to the mobility domain

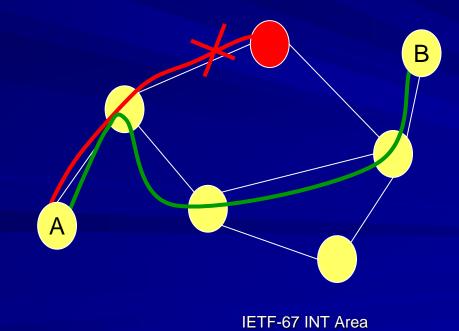
Not all assets are applicable for all mobility models

The Internet Threat Model – A Recap

- Assumption 1: Critical assets are not compromised
- Assumption 2: The attacker has full control of the communication channel
 - Attacker can read, inject, remove, modify any packets without detection

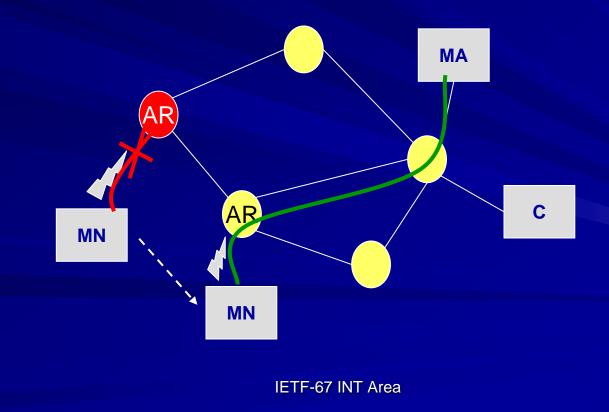
Types of attacks

- Passive attacks
- Active attacks
- Off-path Attacks
- On-path Attacks
 - Superset of Off-path attacks

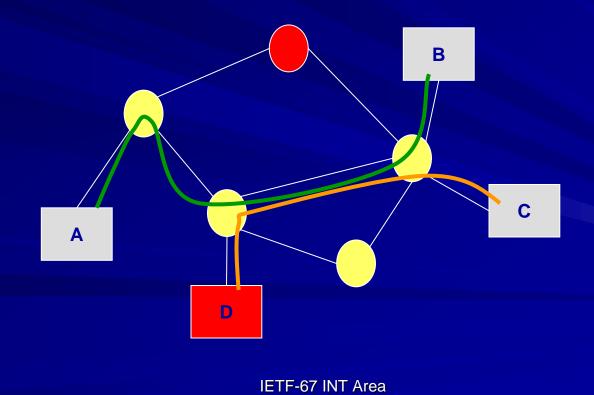

Reference: RFC3552

Are all these assumptions and/or attacks applicable to IP mobility protocols?

Are there other assumptions and/or attacks that are applicable to IP mobility protocols?


Routing and Byzantine Failures

- A network can function in the presence of Byzantine failures
 - Entities lying about routing or other information selectively, while appearing to function correctly (due to compromise, mis-configuration)
- As long as there is a non-faulty path between nodes A and B, they can communicate
 - Even if the adversary sends bogus and disparate information to legitimate infrastructure entities, e.g., routers


Mobility and Failure of Non-critical Nodes

- Mobility signaling is possible even if one a few non-critical assets fail in an adversarial fashion
- Mobility facilitators may fail in a Byzantine fashion, yet MNs can and should be able to get service

Don't Mess With Routing!

- A protocol among a given set of entities must not impact routing for unrelated entities
 - D's malicious use of a protocol between C and D MUST not impact communication between A and B

Outline

- Introduction and Goals
- Defining IP Mobility
- IP Mobility Models
- Typical network architecture
- Assets
- Internet Threat Model A Recap
- Routing and IP Mobility
- Security analysis of IP mobility protocols
 - Threats to IP mobility "providers"
 - Threats to IP mobility "recipients"
 - Off-path vs. on-path attacks
 - Threats enabled by mobility protocols
- Security Requirements
- Security Models

Threats to IP Mobility Provider

Provider's interests

- Ensuring that only authorized entities obtain the service
 Ensuring that service is provided as intended
- Only entities served by the provider are able to create state at the mobility agent

Threats to mobility "agents"

- Creation of state by unauthorized nodes
- Creation of incorrect state for valid nodes

Threats to mobility "facilitators"

- Creation of spurious state at the facilitator
- Use of facilitator to disrupt IP mobility

Threats to IP Mobility Recipient

Recipient's interests

- Ensuring undisrupted IP mobility service

Threats to recipients

- Redirection
 - Recipient's traffic being redirected elsewhere
- DDoS
 - Recipient being victim to a DDoS attack and receiving spurious traffic
- DoS
 - Disruption in IP mobility service
 - Redirection may lead to DoS

Mobility Protocols Facilitate Attacks

Mobility protocols have a unique feature ③

- Any node on the network is a potential victim

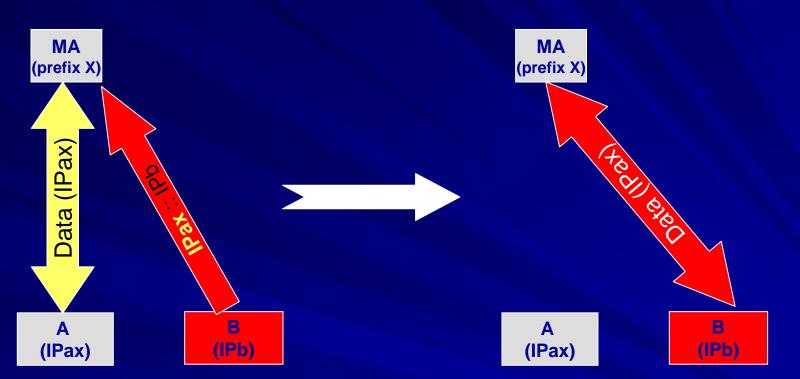
Mobility signaling supplants routing state!

- Set of assets expanded beyond mobility providers and recipients
- Redirection of traffic belonging to other nodes

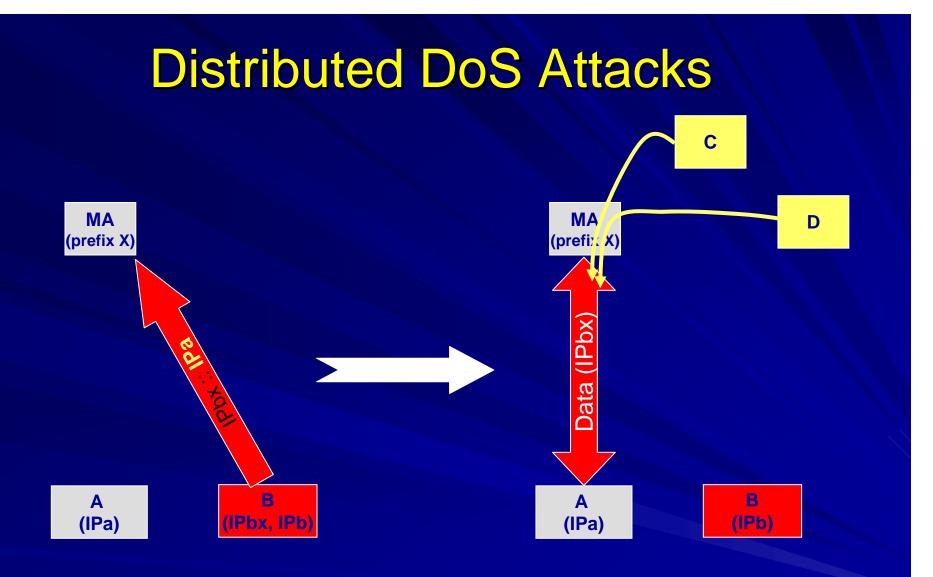
DDoS on any node in the Internet

- IP mobility provides one more way of realizing a DDoS attack
- Is it significantly easier to launch a DDoS using IP mobility protocols?
 Perhaps!

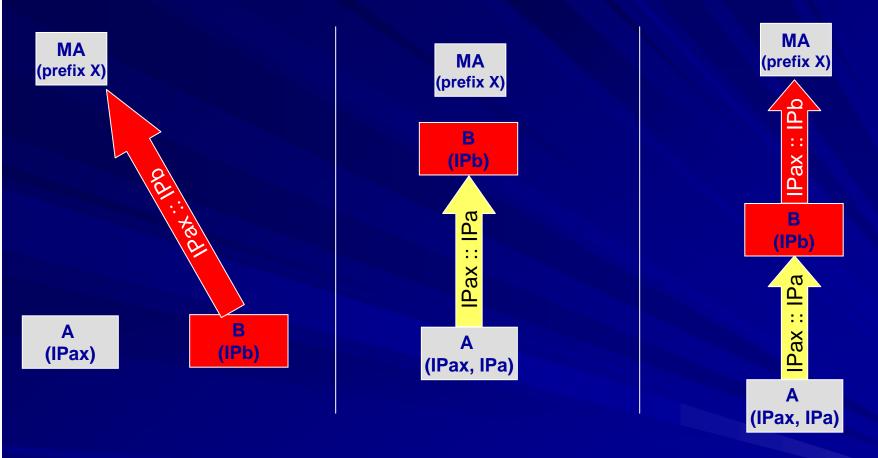
Traceability factors into the equation


The Power of an Off-path Attacker

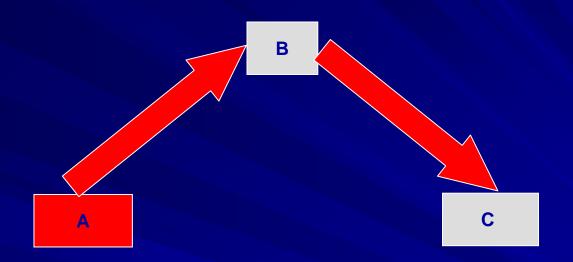
IP mobility protocols make an off-path attacker as powerful as an on-path attacker


Redirection

- Attacker registers victim's address as the "anchor" address
- Distributed DoS
 - Attacker registers victim's address as the "transient" address
- DoS attack on a mobile node
- Reflection attacks
- Passive attacks alone are not a concern
 - Mobility protocols themselves don't require confidentiality
 Confidentiality for IP location privacy may change this
 - Data confidentiality can be achieved using end-to-end security



- Redirection of a victim's traffic to the attacker
- Target victims are nodes (fixed & mobile) on the prefix of the mobility agent


- Redirection of the attacker's traffic to the victim
- DDoS can be caused by a variety of other ways, but IP mobility allows amplification

Denial of Service Attacks

Disruption of service for an MN due to packet deletion/ modification/ bogus registrations

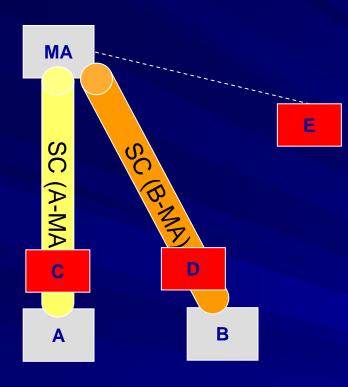
Reflection Attacks

- Cause responses to be sent to a victim (DDoS)
- Cause packets meant for the wrong address to be sent to the victim (forced redirection)

Outline

- Introduction and Goals
- Defining IP Mobility
- IP Mobility Models
- Typical network architecture
- Assets
- Internet Threat Model A Recap
- Routing and IP Mobility
- Security analysis of IP mobility protocols

Security Requirements


- Channel security
- IP Address Authorization
- Entity Authorization
- Protection against unrelated entities
- Protection for unrelated entities
- Security Models

Security Requirements

Channel Security

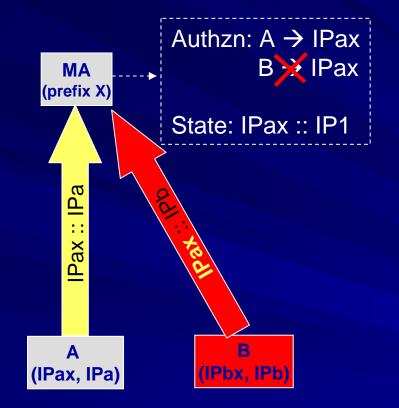
- Data Origin Authentication
 - Integrity Protection
- Replay Protection
- IP Address Authorization
- Entity Authorization
- Protection against compromise of non-critical assets
- Protection for non-participants

Channel Security

Data Origin Authentication

 Ensures creation of state at the mobility agent strictly by authorized nodes

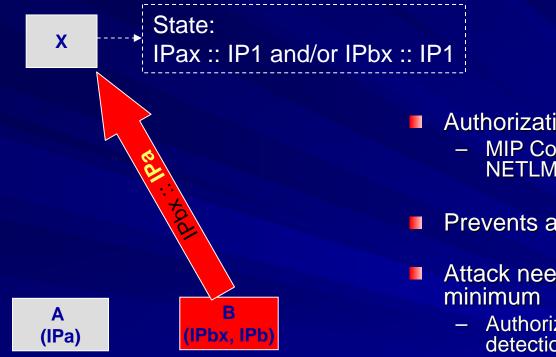
Integrity Protection


- Really the same as data origin authentication!
- Protects against redirection, MiTM, DoS and DDoS attacks

Replay Protection

- Protects against redirection, MiTM, DoS and DDoS attacks
- A, B, MA Signaling Endpoints
- C, D On-path Attackers
- E Off-path Attacker
- SC (A-MA) Unique Secure Channel b/w A & MA
- SC (B-MA) Unique Secure Channel b/w B & MA

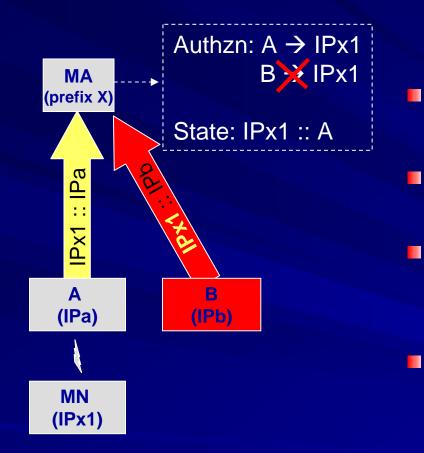
Shared secure channels do not provide channel security!


IP Address Authorization (1/2)

- Authorization for "anchor" address
 MIP HoA, FMIP pCoA, HMIP RCoA, NETLMM LoA
- Ensures IP mobility service only for authorized nodes
- Protects against redirection, MiTM, and DoS attacks

Without authorization on the address being served, a lot breaks!

IP Address Authorization (2/2)

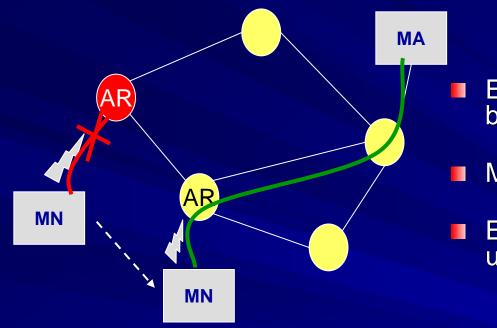


 Authorization for "transient" address
 MIP CoA, FMIP nCoA, HMIP LCoA, NETLMM MAG

- Prevents a DDoS attack
- Attack needs to be detectable at a minimum
 - Authorization of "anchor" address allows detection of attack

If not protected or detectable, this would be an easier way to launch a DDoS attack on any node!

Entity Authorization



- Entity: Signaling endpoint
 - A and B are the "entities"
 - Ensures IP mobility service for a given node only by authorized nodes
 - Two parts to entity authorization
 - Is the entity part of the domain?
 - Is the MN actually at the entity?
- Particularly a concern in network-based mobility

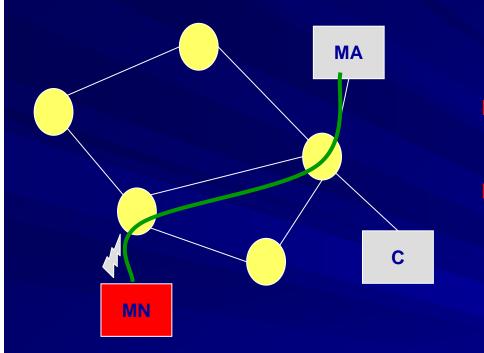
Without entity authorization, compromise of the entity leads to compromise of any mobility session in the domain!

IETF-67 INT Area

Protection Against Non-Critical Asset Compromise

Ensures service is not disrupted by non signaling entities

Mitigates domino effects


- Ensures service via uncompromised entities
 - Entities: AR, HMIP AR, MIP4 FA, NETLMM MAG, FMIP nAR

Compromise of one entity MUST NOT impact sessions traversing other entities!

Domino Effect Mitigation

- Keys MUST be scoped for a given purpose
 Same key must not be used for different purposes
- Keys MUST be scoped to the signaling endpoints – No key sharing!
- Non-critical assets MUST NOT be key distributors or trust anchors!

Protection for Unrelated Entities

Ensures non-participants are unaffected by IP mobility sessions

Allows routing and IP mobility to co-exist

IP mobility must not cause vulnerabilities to nodes not employing the protocol!

IETF-67 INT Area

Takeaways

- 1. Channel security
- 2. IP address authorization
- 3. Entity authorization
- 4. Trust anchors should be security infrastructure entities
- 5. Key distributor must be located "above" the key recipient
- 6. Key scoping
- 7. No key sharing
- 8. Prevent domino effects
- 9. Analyze applicable threat and security models
- 10. Adhere to security model-specific guidelines

Backup Slides

Outline

- Introduction and Goals
- Defining IP Mobility
- IP Mobility Models
- Typical network architecture
- Assets
- Internet Threat Model A Recap
- Routing and IP Mobility
- Security analysis of IP mobility protocols
- Security Requirements
- Security Models
 - AAA-based model
 - Role of EAP in IP mobility
 - Role of IPsec in IP mobility
 - CGA-based model

Security Models

- Various security models in use in different networks
- Security Model Considerations
 - Presence of infrastructure entity
 - E.g., AAA, PKI
 - Need for infrastructure-less security
 - E.g., CGA, self-signed certs
 - Use of existing security protocols
 - E.g., IPsec, IKEv2, EAP
 - End-to-end vs. hop-by-hop security
 - E.g., TLS, IPsec
- Popular security models
 - AAA-based authentication/authorization
 - Use of EAP for authentication
 - Use of IPsec for channel security and address authorization
 - Use of CGAs for infrastructure-less SA creation

Threat analysis and security requirements conformance are vital

AAA-based Authentication/Authorization

Why AAA?

- Allows re-use of AAA-based credentials
- Several managed networks use AAA
- Authentication and authorization are AAA functions
 - Authorization in AAA is different from IP address authorization

What should AAA-based solutions conform to?

draft-housley-aaa-key-management (soon to be a BCP)

EAP in IP Mobility Protocol Security

Why EAP?

- EAP-based network-access authentication is popular
- Re-use protocol supported by the MN and infrastructure

Trends in using EAP

- Minimize the number of authentications
 Given, same credentials and the same server
- Leveraging keys produced by one run of EAP for other purposes
- Limiting re-use to protocol and performing another EAP run for IP mobility protocol security

So, what usages of EAP for IP mobility protocol security are appropriate?

EAP Usage Guidelines

- Distinguish network access from IP mobility
 - One occurs *prior* to obtaining IP access; the other occurs after
- Use of EAP in IKEv2 for authentication is allowed and recommended
- Follow EAP guidelines on key usages
 - EAP MSK is provided to the authenticator for network access control
 - Usage of MSK for other purposes gets into bad cryptographic practices
 - Usage of MSK involves the NAS in IP mobility protocol security
- Use of EMSK-based keys for IP mobility protocol security is yet to be evaluated
 - General concerns on layer violations
 - Efforts underway to make the EMSK hierarchy generic to ensure future usage
 - No consensus yet on whether this is good or bad

IPsec in IP Mobility Protocol Security

- IPsec typically provides channel security
- Tying IP address authorization to IPsec
 - Assign IP address using IKEv2 and tie the IPsec SA to it
 - Limited flexibility in address assignment
- IPsec with Dynamic Keying
 - Use of IKEv2 is a recommended approach
- IPsec with Manual Keying
 - Cumbersome
 - No Replay protection
 - Address authorization needs static address provisioning
- The necessary security properties are realizable using IPsec and IKEv2
- Limitations of IKEv2 and IPsec
 - Frequent signaling endpoint changes (e.g., FMIP) needs new IKE_SAs
 - IKEv2 exchanges add undesirable overhead

CGA in IP Mobility Protocol Security

- Allows infrastructure-less operation
 - Useful in networks that care less about access control and more about address authorization
- Considerations in using CGAs
 - Differentiate between CGAs and SeND
 - SeND uses CGAs
 - CGAs provide the infrastructure-less security
 - CGAs do not mean AR involvement
 - Consider use of CGAs in IKEv2 to re-use IPsec
 - Currently undocumented
 - Consider if use of self-signed certificates will work
 Currently documented for IKEv2
 - Evaluate if use of CGAs satisfies all security requirements