
Eliminating Duplicate Checks
in ICE:

Alternate Proposal

Philip Matthews
Eric Cooper

Alternate Proposal

• Combines best ideas from both Jonathan’s proposal
and Philip/Eric’s proposal.

• Has a unified state machine (rather than separate Rx
and Tx state machines).

• Takes advantage of “associated transport address”
information signaled in SDP.

• Eliminates all duplicate checks.
• Is significantly simpler than the two earlier proposals.

Alternate Proposal

Each endpoint maintains two lists:
• List of Transport Address Pairs, each with two

associated state variables:
– IN: pair works in inbound direction
– OUT: pair works in outbound direction

• List of checks to perform, each of the form:
– From native base transport address

(where “base” = “not server-reflexive”)
– To remote transport address
– One check for each possible combination

Alternate Proposal

• When a Binding Request arrives, receiving
endpoint knows that the transport address
pair given in the username works inbound.

• Also, receiving endpoint knows that any
associated transport address pair also works.
– For example, on L, receiving L1:1:R1:1 means that

both L1:1:R1:1 and L1:1:R2:1 work inbound, if
R2:1 is a server-reflexive tid derived from R1:1.

Alternate Proposal

• Similarly, when a Binding Response arrives,
the endpoint knows that, not only does that
specific transport address pair work
outbound, but so does any associated
transport address pairs
– For example, on R, receiving a response for

L1:1:R1:1 means that both L1:1:R1:1 and
L1:1:R2:1 work outbound, if R2:1 is a server-
reflexive tid derived from R1:1.

Example

NAT NL NAT NR

L R

STUN Server
(no TURN)

L1

L2 R2

R1

Both NATs are BEHAVE compliant. For simplicity, we assume
they have the endpoint-independent filtering property.

L is the Offerer, R is the Answerer. This means that R starts its
checks slightly before L.

Example

NAT NL NAT NR

L R

STUN Server
(no TURN)

L1

L2 R2

R1

Candidates are:
L1, q = 1 R1, q = 1
L2, q = .7 R1, q = .7

Example

NAT NL NAT NR

L R

STUN Server
(no TURN)

L1

L2 R2

R1

In this example, the m/c line is empty (= a-inactive). Thus the
transport address check ordering is:

L1:1:R1:1 1st
L1:1:R2:1 2nd
L2:1:R1:1 3rd
L2:1:R2:1 4th

Example (Step 0)

 On L
Check List Pair In Out
L1:1→R1:1 L1:1:R1:1
L1:1→R2:1 L1:1:R2:1

L2:1:R1:1
L2:1:R2:1

 On R
Pair In Out Check List
L1:1:R1:1 L1:1←R1:1
L1:1:R2:1 L2:1←R1:1
L2:1:R1:1
L2:1:R2:1

Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

Example (Step 1)

 On L
Check List Pair In Out
L1:1→R1:1 L1:1:R1:1
L1:1→R2:1 L1:1:R2:1

L2:1:R1:1
L2:1:R2:1

 On R
Pair In Out Check List
L1:1:R1:1 L1:1←R1:1
L1:1:R2:1 L2:1←R1:1
L2:1:R1:1
L2:1:R2:1

Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

L1:1←R1:1 (=L1:1:R1:1)
L1:1→R1:1 (=R1:1:L1:1)

Step 1: R tries check L1:1←R1:1, and L tries L1:1→R1:1;
both fail.

Example (Step 2)

 On L
Check List Pair In Out
L1:1→R1:1 L1:1:R1:1
L1:1→R2:1 L1:1:R2:1

L2:1:R1:1 √
L2:1:R2:1 √

 On R
Pair In Out Check List
L1:1:R1:1 L1:1←R1:1
L1:1:R2:1 L2:1←R1:1
L2:1:R1:1
L2:1:R2:1

Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

L1:1←R1:1 (=L1:1:R1:1)
L1:1→R1:1 (=R1:1:L1:1)

Step 2: R tries L2:1←R1:1, which reaches L. Thus L knows
L2:1:R1:1 works inbound. In addition, L2:1:R2:1 also works
inbound, since R2:1 is server-reflexive version of R1:1.

L2:1←R1:1 (=L2:1:R1:1)

Example (Step 3)

 On L
Check List Pair In Out
L1:1→R1:1 L1:1:R1:1
L1:1→R2:1 L1:1:R2:1

L2:1:R1:1 √
L2:1:R2:1 √

 On R
Pair In Out Check List
L1:1:R1:1 L1:1←R1:1
L1:1:R2:1 L2:1←R1:1
L2:1:R1:1 √
L2:1:R2:1 √

Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

L1:1←R1:1 (=L1:1:R1:1)
L1:1→R1:1 (=R1:1:L1:1)

Step 3: L sends the response back to R. Now R knows that
L2:1:R1:1 and L2:1:R2:1 work outbound.

L2:1←R1:1 (=L2:1:R1:1)

Example (Step 4)

 On L
Check List Pair In Out
L1:1→R1:1 L1:1:R1:1
L1:1→R2:1 L1:1:R2:1

L2:1:R1:1 √
L2:1:R2:1 √

 On R
Pair In Out Check List
L1:1:R1:1 L1:1←R1:1
L1:1:R2:1 √ L2:1←R1:1
L2:1:R1:1 √
L2:1:R2:1 √ √

Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

L1:1←R1:1 (=L1:1:R1:1)
L1:1→R1:1 (=R1:1:L1:1)

Step 4: L tries L1:1→R2:1, which reach R. Thus R knows that
both L1:1:R2:1 and L2:1:R2:1 work inbound.

L2:1←R1:1 (=L2:1:R1:1)

L1:1→R2:1 (=R2:1:L1:1)

Example (Step 5)

 On L
Check List Pair In Out
L1:1→R1:1 L1:1:R1:1
L1:1→R2:1 L1:1:R2:1 √

L2:1:R1:1 √
L2:1:R2:1 √ √

 On R
Pair In Out Check List
L1:1:R1:1 L1:1←R1:1
L1:1:R2:1 √ L2:1←R1:1
L2:1:R1:1 √
L2:1:R2:1 √ √

Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

L1:1←R1:1 (=L1:1:R1:1)
L1:1→R1:1 (=R1:1:L1:1)

Step 5: R replies, and thus L knows that both L1:1:R2:1 and
L2:1:R2:1 work outbound.

L2:1←R1:1 (=L2:1:R1:1)

L1:1→R2:1 (=R2:1:L1:1)

Example (Step 6)

 On L
Check List Pair In Out
L1:1→R1:1 L1:1:R1:1
L1:1→R2:1 L1:1:R2:1 √

L2:1:R1:1 √
L2:1:R2:1 √ √

 On R
Pair In Out Check List
L1:1:R1:1 L1:1←R1:1
L1:1:R2:1 √ L2:1←R1:1
L2:1:R1:1 √
L2:1:R2:1 √ √

Check List -- List of checks to perform (different for each end)
“In” (resp. “Out”) - Can receive (resp. transmit) on that pair.

L1:1←R1:1 (=L1:1:R1:1)
L1:1→R1:1 (=R1:1:L1:1)

Step 6: At this point, both L and R know that pair L2:1:R2:1
works in both directions, and can be promoted.

L2:1←R1:1 (=L2:1:R1:1)

L1:1→R2:1 (=R2:1:L1:1)

