Eliminating Duplicate Checks in ICE:
 Alternate Proposal

Philip Matthews
Eric Cooper

Alternate Proposal

- Combines best ideas from both Jonathan's proposal and Philip/Eric's proposal.
- Has a unified state machine (rather than separate Rx and Tx state machines).
- Takes advantage of "associated transport address" information signaled in SDP.
- Eliminates all duplicate checks.
- Is significantly simpler than the two earlier proposals.

Alternate Proposal

Each endpoint maintains two lists:

- List of Transport Address Pairs, each with two associated state variables:
- IN: pair works in inbound direction
- OUT: pair works in outbound direction
- List of checks to perform, each of the form:
- From native base transport address (where "base" = "not server-reflexive")
- To remote transport address
- One check for each possible combination

Alternate Proposal

- When a Binding Request arrives, receiving endpoint knows that the transport address pair given in the username works inbound.
- Also, receiving endpoint knows that any associated transport address pair also works.
- For example, on L, receiving L1:1:R1:1 means that both L1:1:R1:1 and L1:1:R2:1 work inbound, if $\mathrm{R} 2: 1$ is a server-reflexive tid derived from R1:1.

Alternate Proposal

- Similarly, when a Binding Response arrives, the endpoint knows that, not only does that specific transport address pair work outbound, but so does any associated transport address pairs
- For example, on R, receiving a response for L1:1:R1:1 means that both L1:1:R1:1 and
L1:1:R2:1 work outbound, if R2:1 is a serverreflexive tid derived from R1:1.

Example

STUN Server (no TURN)

Both NATs are BEHAVE compliant. For simplicity, we assume they have the endpoint-independent filtering property.
L is the Offerer, R is the Answerer. This means that R starts its checks slightly before L .

Example

STUN Server (no TURN)

Candidates are:

$$
\begin{aligned}
& \mathrm{L} 1, \mathrm{q}=1 \\
& \mathrm{~L} 2, \mathrm{q}=.7
\end{aligned}
$$

R2

NAT NR

$\mathrm{R} 1, \mathrm{q}=1$
$\mathrm{R} 1, \mathrm{q}=.7$

Example

STUN Server (no TURN)

In this example, the m / c line is empty (= a-inactive). Thus the transport address check ordering is:

$$
\begin{array}{ll}
\text { L1:1:R1:1 } & \text { 1st } \\
\text { L1:1:R2:1 } & \text { 2nd } \\
\text { L2:1:R1:1 } & \text { 3rd } \\
\text { L2:1:R2:1 } & \text { 4th }
\end{array}
$$

Example (Step 0)

Check List -- List of checks to perform (different for each end) "In" (resp. "Out") - Can receive (resp. transmit) on that pair.

Example (Step 1)

Check List -- List of checks to perform (different for each end) "In" (resp. "Out") - Can receive (resp. transmit) on that pair.

On L		On R	
Check List	Pair In Out	Pair In Out	Check List
L1:1 \rightarrow R1:1	L1:1:R1:1	L1:1:R1:1	L1:1ヶR1:1
$\mathrm{L} 1: 1 \rightarrow \mathrm{R} 2: 1$	L1:1:R2:1	L1:1:R2:1	$\mathrm{L} 2: 1 \leftarrow \mathrm{R} 1: 1$
	L2:1:R1:1	L2:1:R1:1	
	L2:1:R2:1	L2:1:R2:1	
$\underline{L 1: 1} \rightarrow \mathrm{R} 1: 1$	(=R1:1:L1:1)	$\times \leftarrow 1: 1 \leftarrow \mathrm{R} 1: 1$	1:1:R1:1)

Step 1: R tries check $L 1: 1 \leftarrow R 1: 1$, and L tries $L 1: 1 \rightarrow R 1: 1$; both fail.

Example (Step 2)

Check List -- List of checks to perform (different for each end) "In" (resp. "Out") - Can receive (resp. transmit) on that pair.

On L	
Check List	Pair In Out
L1:1 $\rightarrow \mathrm{R} 1: 1$	$\mathrm{~L} 1: 1: \mathrm{R} 1: 1$
$\mathrm{~L} 1: 1 \rightarrow \mathrm{R} 2: 1$	$\mathrm{~L} 1: 1: \mathrm{R} 2: 1$
	$\mathrm{~L} 2: 1: \mathrm{R} 1: 1 \mathrm{~V}$
	$\mathrm{~L} 2: 1: \mathrm{R} 2: 1 \mathrm{~V}$

$L 1: 1 \rightarrow R 1: 1(=R 1: 1: L 1: 1) X$ On R
Pair In Out Check List
L1:1:R1:1 L1:1 $\leftarrow \mathrm{R} 1: 1$
L1:1:R2:1 L2:1 \leftarrow R1:1
L2:1:R1:1
L2:1:R2:1
$x \leftharpoonup \mathrm{~L} 1: 1 \leftarrow \mathrm{R} 1: 1$ (=L1:1:R1:1)
$\mathrm{L} 2: 1 \leftarrow \mathrm{R} 1: 1$ (=L2:1:R1:1)

Step 2: R tries L2:1 $\leftarrow R 1: 1$, which reaches L. Thus L knows L2:1:R1:1 works inbound. In addition, L2:1:R2:1 also works inbound, since R2:1 is server-reflexive version of R1:1.

Example (Step 3)

Check List -- List of checks to perform (different for each end) "In" (resp. "Out") - Can receive (resp. transmit) on that pair.

On L			On R		
Check List	Pair	In Out	Pair	In Out	Check List
L1:1 \rightarrow R1:1	L1:1		L1:1:R1:1		L1:1 \leftarrow R1:1
$\mathrm{L} 1: 1 \rightarrow \mathrm{R} 2: 1$	L1:1		L1:1:R2:1		$\mathrm{L} 2: 1 \leftarrow \mathrm{R} 1: 1$
	L2:1		L2:1:R1:1	1	
	L2:1		L2:1:R2:1	\checkmark	
$\underline{L 1: 1 \rightarrow R 1: 1(=R 1: 1: L 1: 1)} \times$			$\mathrm{L} 1: 1 \leftarrow \mathrm{R} 1: 1$ (=L1:1:R1:1)		
			$\mathrm{L} 2: 1 \leftarrow \mathrm{R} 1: 1$ (=L2:1:R1:1)		

Step 3: L sends the response back to R. Now R knows that L2:1:R1:1 and L2:1:R2:1 work outbound.

Example (Step 4)

Check List -- List of checks to perform (different for each end) "In" (resp. "Out") - Can receive (resp. transmit) on that pair.

On L

Check List Pair In Out
L1:1 \rightarrow R1:1 L1:1:R1:1
L1:1 \rightarrow R2:1 L1:1:R2:1 L2:1:R1:1 $\sqrt{ }$ L2:1:R2:1 $\sqrt{ }$ On R

On L			On R	
Check List	Pair	In Out	Pair In Out	Check List
L1:1 \rightarrow R1:1	L1:1:		L1:1:R1:1	L1:1 \leftarrow R1:1
$\mathrm{L} 1: 1 \rightarrow \mathrm{R} 2: 1$	L1:1:		L1:1:R2:1 ل	$\mathrm{L} 2: 1 \leftarrow \mathrm{R} 1: 1$
	L2:1:		L2:1:R1:1 V	
	L2:1:			
$\underline{L 1: 1 \rightarrow R 1: 1 ~(=R 1: 1: L 1: 1) ~} \times$			$\times \leftarrow$ L1:1ヶR1:1 (=L1:1:R1:1)	
			$\mathrm{L} 2: 1 \leftarrow \mathrm{R} 1: 1$ (=L2:1:R1:1)	
L1:1 \rightarrow R2:1 (=R2:1:L1:1)				

Step 4: L tries $L 1: 1 \rightarrow R 2: 1$, which reach R. Thus R knows that both L1:1:R2:1 and L2:1:R2:1 work inbound.

Example (Step 5)

Check List -- List of checks to perform (different for each end) "In" (resp. "Out") - Can receive (resp. transmit) on that pair.

On L

Check List Pair In Out
L1:1 \rightarrow R1:1 L1:1:R1:1
L1:1 \rightarrow R2:1 L1:1:R2:1 ل L2:1:R1:1 $\sqrt{ }$ L2:1:R2:1 $\sqrt{ } \sqrt{ }$

L1:1 \rightarrow R1:1 (=R1:1:L1:1) On R

On L		On R	
Check List	Pair In Out	Pair In Out	Check List
L1:1 \rightarrow R1:1	L1:1:R1:1	L1:1:R1:1	L1:1 \leftarrow R1:1
$\mathrm{L} 1: 1 \rightarrow \mathrm{R} 2: 1$	L1:1:R2:1 ل	L1:1:R2:1 V	$\mathrm{L} 2: 1 \leftarrow \mathrm{R} 1: 1$
	L2:1:R1:1 ل	L2:1:R1:1 $\sqrt{ }$	
	L2:1:R2:1 $\sqrt{ }$,	L2:1:R2:1 V $\sqrt{ }$	
$\underline{L 1: 1 \rightarrow R 1: 1 ~(=R 1: 1: L 1: 1) ~} \times$		L1:1ヶR1:1 (=L1:1:R1:1)	
		$\mathrm{L} 2: 1 \leftarrow \mathrm{R} 1: 1$ (=L2:1:R1:1)	
L1:1 \rightarrow R2:1 (=R2:1:L1:1)			

Step 5: R replies, and thus L knows that both L1:1:R2:1 and L2:1:R2:1 work outbound.

Example (Step 6)

Check List -- List of checks to perform (different for each end) "In" (resp. "Out") - Can receive (resp. transmit) on that pair.

On L

Check List Pair In Out
L1:1 \rightarrow R1:1 L1:1:R1:1
L1:1 \rightarrow R2:1 L1:1:R2:1 $\sqrt{ }$ L2:1:R1:1 $\sqrt{ }$ L2:1:R2:1 ل $\sqrt{ }$
$\underline{L 1: 1 \rightarrow R 1: 1(=R 1: 1: L 1: 1)}>$ On R

On L		On R	
Check List	Pair In Out	Pair In Out	Check List
L1:1 \rightarrow R1:1	L1:1:R1:1	L1:1:R1:1	L1:1↔R1:1
$\mathrm{L} 1: 1 \rightarrow \mathrm{R} 2: 1$	L1:1:R2:1 ل	L1:1:R2:1 ل	$\mathrm{L} 2: 1 \leftarrow \mathrm{R} 1: 1$
	L2:1:R1:1 $\sqrt{ }$	L2:1:R1:1 V	
	L2:1:R2:1 $\sqrt{ } \sqrt{ }$	L2:1:R2:1 ل $\sqrt{ }$	

Step 6: At this point, both L and R know that pair L2:1:R2:1 works in both directions, and can be promoted.

