
Native SHIM APIs

Miika Komu <miika@iki.fi>
Helsinki Institute for Information Technology

mailto:miika@iki.fi

About the Draft

● The draft has been earlier on HIP RG
● Differences to the earlier draft

– Generalized the text (could be used also by BTNS,
and maybe SHIM6?)

– Used a separate resolver function call earlier, now
uses the standard getaddrinfo

● Contributions
– A new indirection/abstraction called endpoint

descriptor
– Applications gain more control of SHIM Layer
– Application can specify its own public keys

End-point Descriptors

● ED = End-point Descriptor
– 32 bit value
– Acts as a token or handle to a HI

● Why not HI or HIT?
– ED hides the presentation of HIs from most apps
– Deployment of new identifiers/layers

(service/session?) is easier because applications
do not have to be modified

– Implementing opportunistic mode and application
specified identifiers (variable sized public keys)
becomes easier

ED Bindings

Dynamic Binding

*

* *

* 1

*

*
1

1

1

*

*
Dst HI

Src HI Src Iface

Dst AddrDst ED

Src ED

HIP
socket

API Layering

IPv4 API IPv6 API

Ethernet

HIP

IPv6

TCP UDP

Socket

Application
Application

Transport
Layer

Layer

Layer

HIP
Layer

Network
Layer

Link
Layer

IPv4

SHIM API

Naming

Transport Layer

HIP Layer

Network Layer

HI, port

HI

IP address

Hostname, FQDN

ED, port and proto

User Interface

Application Layer

Legacy APIs

● Suitable for non-SHIM aware applications
– Applications need no changes
– Easier deployment path

● Applications use HITs or LSIs to establish
connections using HIP
– No new socket handler required
– The use of IP addresses is also possible

● http://www.ietf.org/internet-drafts/draft-henderson-hip-applications-03.txt

http://www.ietf.org/internet-drafts/draft-henderson-hip-applications-03.txt

Native SHIM API

● Suitable for new SHIM aware applications
– Applications can control the SHIM layer better

● Introduces a new socket family: PF_SHIM
– Detection of SHIM support in the localhost
– Can be used for communicating user or

application specified Host Identifiers
● Introduces a new socket address structure

with new identifier: Endpoint Descriptor (ED)
– Similar to file descriptor, only local significance

Legacy vs. Native SHIM API
struct addrinfo hints, *res, *try;

char *hello = "hello";

int err, bytes, sock;

memset(hints, 0, sizeof(hints));

//hints.ai_family = AF_INET6;

hints.ai_socktype = SOCK_STREAM;

err = getaddrinfo("www.host.org", "echo",
 &hints, &res);

sock = socket(res->ai_family,res->ai_socktype,
res->protocol); // family=AF_INET6

for (try = res; try; try = try->ai_next)
 err = connect(sock, try->ai_addr,
 try->ai_addrlen);
bytes = send(sock, hello, strlen(hello), 0);
bytes = recv(sock, hello, strlen(hello), 0);

err = close(sock);
err = freeaddrinfo(res);

struct addrinfo hints, *res, *try;

char *hello = "hello";

int err, bytes, sock;

memset(hints, 0, sizeof(hints));

hints.flags = AI_ED;

//hints.family = AF_SHIM;

hints.ai_socktype = SOCK_STREAM;

err = getaddrinfo("www.host.org", "echo",
 &hints, &res);

sock = socket(res->ai_family, res->ai_socktype
 res->protocol); // family=PF_SHIM

for (try = res; try; try = try->ai_next)
 err = connect(sock, try->ai_addr,
 try->ai_addrlen);
bytes = send(sock, hello, strlen(hello), 0);
bytes = recv(sock, hello, strlen(hello), 0);

err = close(sock);
err = freeendpointinfo(res);

Application Specified Idenfiers
int sockfd, err, family = PF_SHIM, type = SOCK_STREAM;

char *user_priv_key = "/home/mk/hip_host_dsa_key";
struct endpoint *endpoint;
struct sockaddr_ed my_ed;
struct addrinfoinfo hints, *res = NULL;

err = load_hip_endpoint_pem(user_priv_key, &endpoint);
err = setmyeid(&my_ed, "", endpoint, NULL);
sockfd = socket(family, type, 0);
err = bind(sockfd, (struct sockaddr *) &my_ed,

sizeof(my_ed));

memset(&hints, 0, sizeof(&hints));
hints.ai_socktype = type;
hints.ai_family = family;
hints.flags = AI_ED;
err = getendpointinfo("www.host.org", "echo", &hints, &res);

/* connect, send and recv normally */

Implementation

● http://infrahip.hiit.fi/
● Linux based

implementation
– the resolver

extensions
– application specified

identifiers
– kernelspace socket

handler

application

SHIM socket handler

IPv6 socket handler

userspace

kernelspace

ED

HIT

IPv6 address

BEET IPsec processing

http://infrahip.hiit.fi/

Summary

● ED hides the presentation of HITs and HIs
– Opportunistic HIP
– Deployment of new identifier layers
– Size of HIT may change in the future

● PF_SHIM family can be used e.g. for
detecting SHIM support in the localhost

● Native SHIM API extends HIP architecture by
allowing apps to have their own id

Open Issues

● Use EDs or HITs?
● Semi-legacy APIs required?

– Applications use HITs but are able to set HIP
specific (system-wide) socket options

● Applicability to BTNS
● Accept as a official WG item?

Related Work

● Applying a Cryptographic Namespace to
Applications [Komu et al]

● draft-mkomu-hip-native-api-00
● Application Programming Interfaces for Host

Identity Protocol [Komu]
● draft-henderson-hip-applications
● draft-sugimoto-multihome-shim-api

Questions / Feedback

 Miika Komu <miika@iki.fi>

Helsinki Institute for Information Technology

mailto:miika@iki.fi

