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About the Draft

● The draft has been earlier on HIP RG
● Differences to the earlier draft

– Generalized the text (could be used also by BTNS, 
and maybe SHIM6?)

– Used a separate resolver function call earlier, now 
uses the standard getaddrinfo

● Contributions
– A new indirection/abstraction called endpoint 

descriptor
– Applications gain more control of SHIM Layer
– Application can specify its own public keys



End-point Descriptors

● ED = End-point Descriptor
– 32 bit value
– Acts as a token or handle to a HI

● Why not HI or HIT?
– ED hides the presentation of HIs from most apps
– Deployment of new identifiers/layers 

(service/session?) is easier because applications 
do not have to be modified

– Implementing opportunistic mode and application 
specified identifiers (variable sized public keys) 
becomes easier
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Legacy APIs

● Suitable for non-SHIM aware applications
– Applications need no changes
– Easier deployment path

● Applications use HITs or LSIs to establish 
connections using HIP
– No new socket handler required
– The use of IP addresses is also possible

● http://www.ietf.org/internet-drafts/draft-henderson-hip-applications-03.txt

http://www.ietf.org/internet-drafts/draft-henderson-hip-applications-03.txt


Native SHIM API

● Suitable for new SHIM aware applications
– Applications can control the SHIM layer better

● Introduces a new socket family: PF_SHIM
– Detection of SHIM support in the localhost
– Can be used for communicating user or 

application specified Host Identifiers
● Introduces a new socket address structure 

with new identifier: Endpoint Descriptor (ED)
– Similar to file descriptor, only local significance



Legacy vs. Native SHIM API
struct addrinfo hints, *res, *try;

char *hello = "hello";

int err, bytes, sock;

memset(hints, 0, sizeof(hints));

//hints.ai_family = AF_INET6;

hints.ai_socktype = SOCK_STREAM;

err   = getaddrinfo("www.host.org", "echo",
                               &hints, &res);

sock  = socket(res->ai_family,res->ai_socktype, 
res->protocol); // family=AF_INET6

for (try = res; try; try = try->ai_next)
      err = connect(sock, try->ai_addr,
                             try->ai_addrlen);
bytes = send(sock, hello, strlen(hello), 0);
bytes = recv(sock, hello, strlen(hello), 0);

err   = close(sock);
err   = freeaddrinfo(res);

struct addrinfo hints, *res, *try;

char *hello = "hello";

int err,  bytes, sock;

memset(hints, 0, sizeof(hints));

hints.flags = AI_ED;

//hints.family = AF_SHIM;

hints.ai_socktype = SOCK_STREAM;

err   = getaddrinfo("www.host.org", "echo",
                               &hints, &res);

sock  = socket(res->ai_family, res->ai_socktype 
 res->protocol); // family=PF_SHIM

for (try = res; try; try = try->ai_next)
      err = connect(sock, try->ai_addr,
                             try->ai_addrlen);
bytes = send(sock, hello, strlen(hello), 0);
bytes = recv(sock, hello, strlen(hello), 0);

err   = close(sock);
err   = freeendpointinfo(res);



Application Specified Idenfiers
int sockfd, err, family = PF_SHIM, type = SOCK_STREAM;

char *user_priv_key = "/home/mk/hip_host_dsa_key";
struct endpoint *endpoint;
struct sockaddr_ed my_ed;
struct addrinfoinfo hints, *res = NULL;
 
err = load_hip_endpoint_pem(user_priv_key, &endpoint);
err = setmyeid(&my_ed, "", endpoint, NULL);
sockfd = socket(family, type, 0);
err = bind(sockfd, (struct sockaddr *) &my_ed, 

sizeof(my_ed));

memset(&hints, 0, sizeof(&hints));
hints.ai_socktype = type;
hints.ai_family = family;
hints.flags = AI_ED;
err = getendpointinfo("www.host.org", "echo", &hints, &res);

/* connect, send and recv normally */



Implementation

● http://infrahip.hiit.fi/
● Linux based 

implementation
– the resolver 

extensions
– application specified 

identifiers
– kernelspace socket 

handler
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Summary

● ED hides the presentation of HITs and HIs
– Opportunistic HIP
– Deployment of new identifier layers
– Size of HIT may change in the future

● PF_SHIM family can be used e.g. for 
detecting SHIM support in the localhost

● Native SHIM API extends HIP architecture by 
allowing apps to have their own id



Open Issues

● Use EDs or HITs?
● Semi-legacy APIs required?

– Applications use HITs but are able to set HIP 
specific (system-wide) socket options

● Applicability to BTNS
● Accept as a official WG item?



Related Work

● Applying a Cryptographic Namespace to 
Applications [Komu et al]

● draft-mkomu-hip-native-api-00
● Application Programming Interfaces for Host 

Identity Protocol [Komu]
● draft-henderson-hip-applications
● draft-sugimoto-multihome-shim-api
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