Global Information Grid (GIG)

Topology / Multicast Routing Requirements

13 July 2006

Dow Street, OSD NII dow.street@linquest.com

Background (1)

- OSD NII and DISA are leading a large-scale system engineering activity to define the overall network architecture for the Global Information Grid (GIG).
- The GIG is likely to push the limits of current approaches and protocols in several areas: routing, QOS, security, etc.
- The GIG Routing Working Group (GRWG) is focused on the IP routing part of the problem (unicast and multicast routing).
- To be economically viable, the GIG will need to heavily leverage commercial hardware and software.
- However, it will be difficult to meet GIG requirements with the current protocols.
- The current planning goes to 2015+, which gives some time for modifying existing protocols or developing a new models.

GIG Network Description (1)

- The GIG will be a large network:
 - working estimate of 10⁵ routers, 10⁷ hosts within 12 years
 - a few small developments or changes in paradigm could push that to 10^6 routers
- The GIG will include many sub-administrations within a single, overarching technical authority.
- The GIG will have a wide range of node and link types, from carrier class backbone networks to human portable, battery powered devices.
- The GIG will be global in scope.
- The GIG will support critical operations.
- The GIG will (in all likelihood) make use of IPv6 as the packet format and common convergence layer for enabling connectivity.

GIG Network Description (2)

There are several key differences between the Internet and the GIG that impact the applicability of the current Internet protocols:

- pervasive network mobility
- the nature of routing commons
- requirements for security

How do these impact multicast?

Pervasive Network Mobility (1) - Multicast Impacts

- The GIG will comprise a large number of globally dispersed, geographically mobile networks.
- Many of these networks will be carried on vehicles, leading to extensive use of wireless RF.
- Vehicle based networks will make up large sections of the *network* infrastructure as well as connecting to the edge.
- RF capacity is quite limited (no option to over-provision), which makes multicast an critical part of the architecture.
- RF link intermittency and network/node mobility can cause problems for IP multicast tree construction and maintenance.
- E.g. Senders move, receivers move, RPs move or become disconnected, links within the tree flap, etc
- The GRWG has recently kicked-off a study on IP multicast over dynamic topologies. (not quite MANETs, but rather macro-mobile networks)

Nature of the Routing Commons (1) - Multicast Impacts

- There is a single overarching authority for all GIG assets with (in theory)
 dictatorial control over sub-administrations.
- GIG users cooperate to accomplish mission goals and share limited global resources - i.e. mission-oriented network commons.
- No underlying business model required to motivate multicast deployment can decree "turn on multicast!" and it will have some effect.
- In reality, the "business case" is already there due to widespread use of RF where efficiency gains provided by multicast are critical.
- Communities of interest (set of group members) within the network are highly dynamic, global, large, and small.
- In some parts of the GIG today, multicast makes up more than 60% of the network traffic.
- Both one-to-many (i.e. SSM) and many-to-many (i.e. ASM) information exchange is important. (sensor data, situational awareness)
- QOS for multicast traffic may also be required.

Requirements for Security (1) - Multicast Impacts

- Security is a principal consideration due to the nature of the environment.
- Widespread use of IPsec gateways (tunnel mode) for user traffic
 - Multicast solution must span multiple network segments with only limited control plan communication between PT and CT networks
 - Limits the applicability of overlays, ALM, etc which require information exchange between user network and nodes within the infrastructure
- Requirement for some control over multicast
 - Group membership control
 - Network resources able to be consumed (total multicast, per group, etc)
 - Rate limiting vs. absolute
- GRWG is currently conducting an analysis of requirements in this area.