
An Efficient Loop-Detection
Algorithm for SIP Proxies

draft-campen-sipping-stack-loop-detect-00.txt

Byron Campen
Estacado Systems



The Algorithm in Brief

● All nodes have a unique number(node value)

● Requests will contain a stack of node values.

● When a request passes through a node (with
value x), pop node values until a node value
less than or equal to x is found. If we find a
node value equal to x, we have found a loop.

● Push x onto the stack, and forward the
request.



An Example

When the request traverses the minimal node, the
node value that is pushed persists until the request
comes back. The value is discovered at that time.



Computational and Space
Complexities

● O(n) aggregate complexity, O(1) average for
each proxy. Constant multiplier is slightly less
than that of RFC 3261 loop detection.

● O(log n) average space requirement.
Constant multiplier is btw 17-26 bytes.



Other Desirable Qualities

● Malicious UACs and proxies in the “tail”
cannot cause the algorithm to fail in detecting
a loop.

● Non-participating proxies will not cause the
algorithm to fail, as long as there is at least
one participating proxy in the loop.

● Much better than other algorithms at handling
a long “tail” (something that could be easily
introduced by someone with malicious intent)

● Handles short loops very efficiently.



Possible Shortcomings

● Requires a new header, and additional bits

● B2BUAs can corrupt the state needed for
loop-detection (removing/reordering headers)

● Algorithm halts at a random point during the
second loop.

● Vulnerable to broken or malicious proxies
inside the loop.

● False positives are possible (but unlikely)


