
Randomized Hashing
for Signatures

Shai Halevi and Hugo Krawczyk

IBM Research

http://www.ietf.org/internet-drafts/draft-irtf-cfrg-rhash-00.txt

Our Proposal: Executive Summary

• Hash functions should have a randomized
“mode of operation”
– This mode needs weaker security properties

from the underlying hash function.

• Signature standards should use this mode
– So that signatures will remain secure even if

the hash function in use only has the weaker
security.

• This is a general and well-known
methodology that's advisable regardless of
the specific hash function in use.

• This methodology is especially advisable
today, when we're not sure about the
security of the hash functions we're using.

 Note:

Hash Functions and Signatures
• To sign a message x:

– Set h = H(x)

– Compute, e.g., s = RSA−1(encode(h))

– s is the signature on x

• If an attacker can find y≠x s.t. H(x)=H(y)
then s is also a signature on y

• ...you were using MD5 for THAT???

How to fix this?

• Use more secure hash functions
– Do you know of any?

• Use schemes that require less security of
the underlying hash function
– That’s our focus in this I-D

– In particular, using randomized/salted hashing

Salted Hashing and Signatures

• Use Hr(x) instead of H(x)
– r is a random “salt value”

– Later we’ll talk about how to salt H

• To sign a message x:
– Choose a new random salt r, set h = Hr(x)

– Compute, e.g., s = RSA−1(encode(h,r))

– The signature is the pair (r,s)

Why is this better?

• Finding plain (“off-line”) collisions in H are
useless to attacker.

• To attack the signatures via finding
collisions in H, an attacker needs to:
– Obtain signatures (ri,si) on messages xi

– For some i, find some y≠xi s.t. Hri(xi)=Hri(y).

• This seems considerably harder than
finding collisions off-line.

 Standard levels of security
of hash Functions

• Strong: full collision resistance

• Weaker: target collision resistance
– We’ll mostly focus on this

• There are even weaker notions
– 2nd pre-image resistance

– One wayness

Full Collision Resistance (CR)

• Attacker cannot find any x≠y s.t. H(x)=H(y)

• That’s a very strong requirement
– We should design hash functions to meet this

level of security

– But also design signature schemes that do not
depend on the hash functions meeting such a
strong notion of security

Target Collision-Resistance (TCR)

• Security against the following attack:
– Attacker chooses x
– r is chosen at random and given to attacker
– Attacker tries to find y≠x s.t. Hr(x)=Hr(y)

• Sounds familiar?
– Theorem: Using TCR hashing in the mode from

four slides ago is sufficient for secure
signatures

– See [Bellare-Rogaway97,Naor-Yung89]

TCR is weaker than CR

• No “birthday paradox”, brute-force attack
takes 2n time rather than 2n/2

• The attacker needs to interact with the
“hasher”, not an off-line attack

Modifying signature standards to
use randomized hashing

• The main issue is likely to be where to fit
the salt component r in existing signature
fields
– Maybe as part of an AlgorithmIdentifier?

(suggestion due to Burt Kalisky)

• In most settings, generating the
randomness is unlikely to be an issue

RSA Signatures

• It may be possible to use the “message
recovery” property of RSA
– r can be deduced from encode(h,r)

– So the signature is only s = RSA−1(encode(h,r))

– To verify you must first compute RSA(s), then
recover r and hash

• More discussion in the draft

DSA Signatures

• DSA signatures already have a format (r,s)
with a random r

• Hopefully we can use the same r also for
hashing

• More discussion in the draft

How to Salt a Hash Function?

• More Research is Needed on That

• Some plausible proposals:
– Hr(x) = H(r ⊕ x)

• if r is shorter than x, just repeat it

– Or also interleave r after every block of x

– See discussion in the Internet-Draft

• Aside: Hr(x) = HMAC-Hr(x) does not seem
to be the right answer

Repeating Executive Summary

• Hash functions should have a randomized
“mode of operation”
– This mode makes weaker security requirements

from the hash function in use

• Signature standards should use this mode
– So that these weaker security requirements will

suffice for secure signatures

Two more comments

On “provable security”:

• “Provable Security” of signatures is often in
the Random-Oracle model

• It seems a stretch to use this model when
talking about “broken hash functions”

• Not clear what model is reasonable for
proving security in this context

On “on-line” vs. “off-line” attacks:

On-line vs. Off-line: Scenario #1

Engineer: “We’re using MD5 for certificates,
LWW can forge a certificate with about 235

off-line computations (takes maybe a few
hours on a PC).”

Boss: “I want this fixed yesterday, cancel all
vacations until it is fixed!”
(… and later I’ll fire you for letting this happen)

LWW: Lenstra, Wang and Weger

On-line vs. Off-line: Scenario #2

Engineer: “We’re using randomized-MD5
for certificates, LWW can forge a new
certificate after we give them about 235

valid certificates (235 ~ 30 billion).”

Boss: “I’m going on vacation now, we’ll
discuss this when I’m back.”
(… hopefully by then somebody else will fix it)

Is TCR Really the Right Notion?

• Actually, an attacker can also:
– Request signatures on many messages x1…xn

– Get (r1,s1)…(rn,sn)
– Tries to find y≠xi s.t. Hri(xi)=Hri(y) (for some i)

• Note: this is an on-line attack (vs. off-line
attacks if the hashing is deterministic)

