Randomized Hashing
for Signatures

Shai Halevi and Hugo Krawczyk
IBM Research

http://www.ietf.org/internet-drafts/draft-irtf-cfrg-rhash-00.txt

Our Proposal: Executive Summary

 Hash functions should have a randomized
“mode of operation”

— This mode needs weaker security properties
from the underlying hash function.

* Signature standards should use this mode

— So that signatures will remain secure even if
the hash function in use only has the weaker
security.

Note:

* This is a general and well-known
methodology that's advisable regardless of
the specific hash function in use.

* This methodology is especially advisable
today, when we're not sure about the
security of the hash functions we're using.

Hash Functions and Signatures

* To signh a message X:
— Set h = H(x)
— Compute, e.g., s = RSA-!(encode(h))
— s is the signature on x
 If an attacker can find y=x s.t. H(x)=H(y)
then s is also a signature on y

 ...you were using MD5 for THAT?77

How to tix this?

» Use more secure hash functions
— Do you know of any?
* Use schemes that require less security of
the underlying hash function
— That's our focus in this I-D
— In particular, using randomized/salted hashing

Salted Hashing and Signatures

* Use H.(x) instead of H(x)

—ris a random “salt value”
— Later we’ll talk about how to salt H

* To signh a message X:
— Choose a new random salt r, set h = H (x)
— Compute, e.g., s = RSA-!(encode(h,r))
— The signature is the pair (r,s)

Why 1s this better?

* Finding plain (“off-line”) collisions in H are
useless to attacker.
« To attack the signatures via finding
collisions in H, an attacker needs to:
— Obtain signatures (r;,s;) on messages X
— For some |, find some y=x; s.t. H.(x,)=H.(y).
* This seems considerably harder than
finding collisions off-line.

Standard levels of security
of hash Functions

« Strong: full collision resistance

* Weaker: target collision resistance
— We’'ll mostly focus on this

* There are even weaker notions
— 2" pre-image resistance
— One wayness

Full Collision Resistance (CR)

- Attacker cannot find any x=y s.t. H(x)=H(y)

* That's a very strong requirement

— We should design hash functions to meet this
level of security

— But also design signature schemes that do not
depend on the hash functions meeting such a
strong notion of security

Target Collision-Resistance (TCR)

* Security against the following attack:
— Attacker chooses x

—ris chosen at random and given to attacker
— Attacker tries to find y=x s.t. H.(x)=H.(y)

 Sounds familiar?

— Theorem: Using TCR hashing in the mode from
four slides ago is sufficient for secure
signatures

— See [Bellare-Rogaway97,Naor-Yung89]

TCR 1s weaker than CR

* No “birthday paradox”, brute-force attack
takes 2" time rather than 22

 The attacker needs to interact with the
“*hasher”, not an off-line attack

Modifying signature standards to
use randomized hashing

 The main issue is likely to be where to fit
the salt component r in existing signature
fields

— Maybe as part of an
(suggestion due to Burt Kalisky)

* |In most settings, generating the
randomness is unlikely to be an issue

RSA Signatures

It may be possible to use the "message
recovery” property of RSA

—r can be deduced from encode(h,r)
— So the signature is only s = RSA-!(encode(h,r))

— To verify you must first compute RSA(s), then
recover r and hash

 More discussion in the draft

DSA Signatures

* DSA signatures already have a format (r,s)
with a random r

e Hopefully we can use the same r also for
hashing

 More discussion in the draft

How to Salt a Hash Function?

* More Research is Needed on That

« Some plausible proposals:
o Hr(x) = H(r ®x)
* if ris shorter than x, just repeat it
— Or also interleave r after every block of x

— See discussion in the Internet-Draft

* Aside: H(x) = HMAC-H (x) does not seem
to be the right answer

Repeating Executive Summary

 Hash functions should have a randomized
“mode of operation”

— This mode makes weaker security requirements
from the hash function in use

* Signature standards should use this mode

— So that these weaker security requirements will
suffice for secure signatures

Two more comments

On “provable security”:

* “Provable Security” of signatures is often in
the Random-Oracle model

* |t seems a stretch to use this model when
talking about “broken hash functions”

* Not clear what model is reasonable for
proving security in this context

On “on-line” vs. “off-line” attacks:

On-line vs. Oft-line: Scenario #1

Engineer: "We're using MD5 for certificates,
LWW can forge a certificate with about 2°°
off-line computations (takes maybe a few
hours on a PC).”

Boss: “| want this fixed yesterday, cancel all
vacations until it is fixed!”

(... and later I'll fire you for letting this happen)

LWW: Lenstra, Wang and Weger

On-line vs. Oft-line: Scenario #2

Engineer: “We're using randomized-MD35
for certificates, LWW can forge a new
certificate after we give them about 23°
valid certificates (2%°~ 30 billion).”

Boss: “I'm going on vacation now, we'll
discuss this when I'm back.”

(... hopefully by then somebody else will fix it)

Is TCR Really the Right Notion?

» Actually, an attacker can also:
— Request signatures on many messages X,...X,
— Get (ry,84).-.(r,,S,)
— Tries to find y=x; s.t. H.(x)=H.(y) (for some i)

* Note: this is an on-line attack (vs. off-line
attacks if the hashing is deterministic)

