Collision Resistant Usage of SHA-1 via Message Pre-processing

Michael Szydlo

RSA Security

Yiqun Lisa Yin

Independent Consultant

Recent Advances in Hash Collision Attacks

- Efficient collisions found for MD4, MD5
 - Improved techniques include differential, message modification approaches
 - Other hash functions affected
- Wang, Yin, Yu focus on full SHA-1 (2005)
 - Complexity of collision currently 2⁶⁹
 - Compare to design goal of 2⁸⁰
- Security community planning response

Standard Track Response

- Option #1: Upgrade hash function
 - Completely new hash function
 - Use SHA-256
 - Truncate to SHA-256 output to 160 bits
- Option #2: Re-design affected protocols
 - Incorporate randomness into hashing
 - Randomized Hashing (Halevi, Krawczyk)
 - $H_r(m) = H(m XOR r||r||r...r)$
 - $RSASign(m) = (r,RSA(r,H_r(m)))$

Considerations

Upgrade Option

- New hash function design takes years
- Larger output of SHA-256 inconvenient
- Security of "Truncated SHA-256" has not been explicitly studied

Randomized Hashing Option

- Randomness is required and needs to be managed
- Possible changes in signature size
- Alter protocols such as PKCS#1

Message Pre-processing

- A simple message transformation
 - M' = (M), _ is very simple function
 - New derived hash function is
 - SHApp(m) = SHA-1(_(M))
- Effects on applications
 - Prevents all known collision attacks
 - stretches message length 33-100%

Two Candidate Transformations

- Message Whitening (word-wise)
 - $-m_1 m_2 m_3 m_4 m_5$ becomes
 - $m_1 m_2 ... m_{12} 0 0 0 0 m_{13} m_{14} ... m_{24} 0 0 0 0 m_{25}$
 - Each block contains whitened words
- Message Interleaving
 - $-m_1 m_2 m_3 m_4 m_5 \dots$ becomes
 - $m_1 m_1 m_2 m_2 m_3 m_3 ...$
 - Each block contains duplicated words

Implementation Options

- Pre-processing within SHA-1 Function
 - Change SHAUpdate() to SHAppUpdate()
 - New function SHAppUpdate()
 - expands m via _
 - calls usual SHAUpdate() as black box
- Pre-processing outside SHA-1 Function
 - Processing occurs first and then calls usual SHA-1 as black box
- Two options are interoperable
 - Which option is better depends on the application

Implementation and Security Features

- Zero "API signature" change
 - Output of SHApp(m) is automatically 160-bit
- Almost zero change to protocol specification
 - Only need a new algorithm identifier for SHApp
- Security analysis
 - Leverages on existing analysis of SHA-1
 - Effects of pre-processing techniques can be quantified

Comparing Approaches

	Truncate SHA-256	Random Hash	Preprocess
Hash Output Truncation	V		
Change Signature Size		V	
Randomness Required		V	
Replace SHA1 Code	$\sqrt{}$		
Change Message before Hashing			$\sqrt{}$
Execution Cost (time increase)	50-200% Depends on SHA-256 slowdown on platform	(not %) Depends on random generation	33-100% Depends whitening parameter

Conclusions

- Message preprocessing is viable solution to increasing secure life of SHA-1
- Technique can also be applied to MD5
- Long term solutions involve design of new hash function from the ground up
- See paper for additional detail including security analysis
 - Submitted to NIST for inclusion in the Cryptographic Hash Workshop scheduled for 31-Oct-2005
 - Available online at: http://eprint.iacr.org/2005/248