
Native HIP API

Miika Komu <miika@iki.fi>
Andrei Gurtov <gurtov@cs.helsinki.fi>

Helsinki Institute for Information Technology

About Host Identity Protocol (HIP)

● HIP base exchange is an authenticated Diffie-
Hellman key exchange

● Extensions include rendezvous, mobility and
multihoming support

● Introduces a new wedge layer between transport
and network layers

● The difference to other key exchange protocols:
introduces a cryptographic namespace transport
layer and application layers

Terminology

● HI = Host Identifier

● HIT = Host Identity Tag

● LSI = Local Scope Identifier

● Resolver = maps host names to addresses

API Overview

IPv4 API IPv6 API

Ethernet

HIP

HIP API

IPv6

TCP UDP

Socket

Application
Application

Transport
Layer

Layer

Layer

HIP
Layer

Network
Layer

Link
Layer

IPv4

Legacy APIs

● Suitable for legacy HIP applications
– Applications need no or little changes

● The modified resolver gives the application an
LSI or HIT instead of an IPv4 or IPv6 address
– The mapping to the routable IP address is sent to HIP

software module

● Connecting directly to a HIT; the mapping to the
IP address must be handled by some other means

Native HIP API

● Suitable for new HIP-aware applications
– Enables application to control the HIP layer better

● Introduces a new socket family: PF_HIP
– Easy detection of HIP support in the localhost
– Can be used for communicating user or application

specified Host Identifiers

● Introduces a new socket address structure with
new identifier: Endpoint Descriptor (ED)
– Similar to file descriptor, only local significance

Legacy vs. Native HIP API
struct addrinfo hints, *res, *try;

char *hello = "hello";

int err, int bytes, sock;
memset(hints, 0, sizeof(hints));
hints.ai_flags = AI_HIP;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;

err = getaddrinfo("www.host.org", "echo",
&hints, &res);

sock = socket(res->ai_family, res->ai_socktype,
res->protocol);

for (try = res; try; try = try->ai_next)
err = connect(sock, try->ai_addr,

try->ai_addrlen);
bytes = send(sock, hello, strlen(hello), 0);
bytes = recv(sock, hello, strlen(hello), 0);

err = close(sock);
err = freeaddrinfo(res);

struct endpointinfo hints, *res, *try;

char *hello = "hello";

int err, int bytes, sock;
memset(hints, 0, sizeof(hints));
hints.ei_family = PF_HIP;
hints.ei_socktype = SOCK_STREAM;

err = getendpointinfo("www.host.org", "echo",
&hints, &res);

sock = socket(res->ai_family, res->ai_socktype,
res->protocol);

for (try = res; try; try = try->ai_next)
err = connect(sock, try->ai_addr,

try->ai_addrlen);
bytes = send(sock, hello, strlen(hello), 0);
bytes = recv(sock, hello, strlen(hello), 0);

err = close(sock);
err = freeendpointinfo(res);

Application Specified Identifiers
int sockfd, err, family = PF_HIP,

type = SOCK_STREAM;
char *user_priv_key = "/home/mk/hip_host_dsa_key";
struct endpoint *endpoint;
struct sockaddr_ed my_ed;
struct endpointinfo hints, *res = NULL;

err = load_hip_endpoint_pem(user_priv_key, &endpoint);
err = setmyeid(&my_ed, "", endpoint, NULL);
sockfd = socket(family, type, 0);
err = bind(sockfd, (struct sockaddr *) &my_ed, sizeof(my_ed));

memset(&hints, 0, sizeof(&hints));
hints.ei_socktype = type;
hints.ei_family = family;
err = getendpointinfo("www.host.org", "echo", &hints, &res);

/* connect, send and recv normally */

Summary

● ED hides the presentation of HITs and HIs
– Useful e.g. in implementing opportunistic HIP
– Size of HIT may change in the future

● PF_HIP family can be used e.g. for detecting HIP
support in the localhost

● Native HIP API extends HIP architecture by
allowing apps to have their own id

References

● Applying a Cryptographic Namespace to
Applications [Komu et al]

● draft-mkomu-hip-native-api-00.txt

● Application Programming Interfaces for Host
Identity Protocol

Questions / Feedback

Miika Komu <miika@iki.fi>

	Native HIP API
	About Host Identity Protocol (HIP)
	Terminology
	API Overview
	Legacy APIs
	Native HIP API
	Legacy vs. Native HIP API
	Application Specified Identifiers
	Summary
	References
	Questions / Feedback

