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About Host Identity Protocol (HIP)

● HIP base exchange is an authenticated Diffie-
Hellman key exchange

● Extensions include rendezvous, mobility and 
multihoming support

● Introduces a new wedge layer between transport 
and network layers

● The difference to other key exchange protocols: 
introduces a cryptographic namespace transport 
layer and application layers



Terminology

● HI = Host Identifier

● HIT = Host Identity Tag

● LSI = Local Scope Identifier

● Resolver = maps host names to addresses



API Overview
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Legacy APIs

● Suitable for legacy HIP applications
– Applications need no or little changes

● The modified resolver gives the application an 
LSI or HIT instead of an IPv4 or IPv6 address
– The mapping to the routable IP address is sent to HIP 

software module

● Connecting directly to a HIT; the mapping to the 
IP address must be handled by some other means



Native HIP API

● Suitable for new HIP-aware applications
– Enables application to control the HIP layer better

● Introduces a new socket family: PF_HIP
– Easy detection of HIP support in the localhost
– Can be used for communicating user or application 

specified Host Identifiers

● Introduces a new socket address structure with 
new identifier: Endpoint Descriptor (ED)
– Similar to file descriptor, only local significance



Legacy vs. Native HIP API
struct addrinfo hints, *res, *try;

char *hello = "hello";

int err, int bytes, sock;
memset(hints, 0, sizeof(hints));
hints.ai_flags = AI_HIP;
hints.ai_family = AF_INET6;
hints.ai_socktype = SOCK_STREAM;

err   = getaddrinfo("www.host.org", "echo",
&hints, &res);

sock  = socket(res->ai_family, res->ai_socktype,
res->protocol);

for (try = res; try; try = try->ai_next)
err = connect(sock, try->ai_addr,

try->ai_addrlen);
bytes = send(sock, hello, strlen(hello), 0);
bytes = recv(sock, hello, strlen(hello), 0);

err   = close(sock);
err   = freeaddrinfo(res);

struct endpointinfo hints, *res, *try;

char *hello = "hello";

int err, int bytes, sock;
memset(hints, 0, sizeof(hints));
hints.ei_family = PF_HIP;
hints.ei_socktype = SOCK_STREAM;

err   = getendpointinfo("www.host.org", "echo",
&hints, &res);

sock  = socket(res->ai_family, res->ai_socktype,
res->protocol);

for (try = res; try; try = try->ai_next)
err = connect(sock, try->ai_addr,

try->ai_addrlen);
bytes = send(sock, hello, strlen(hello), 0);
bytes = recv(sock, hello, strlen(hello), 0);

err   = close(sock);
err   = freeendpointinfo(res);



Application Specified Identifiers
int sockfd, err, family = PF_HIP,

type = SOCK_STREAM;
char *user_priv_key = "/home/mk/hip_host_dsa_key";
struct endpoint *endpoint;
struct sockaddr_ed my_ed;
struct endpointinfo hints, *res = NULL;

err = load_hip_endpoint_pem(user_priv_key, &endpoint);
err = setmyeid(&my_ed, "", endpoint, NULL);
sockfd = socket(family, type, 0);
err = bind(sockfd, (struct sockaddr *) &my_ed, sizeof(my_ed));

memset(&hints, 0, sizeof(&hints));
hints.ei_socktype = type;
hints.ei_family = family;
err = getendpointinfo("www.host.org", "echo", &hints, &res);

/* connect, send and recv normally */



Summary

● ED hides the presentation of HITs and HIs
– Useful e.g. in implementing opportunistic HIP
– Size of HIT may change in the future

● PF_HIP family can be used e.g. for detecting HIP 
support in the localhost

● Native HIP API extends HIP architecture by 
allowing apps to have their own id



References

● Applying a Cryptographic Namespace to 
Applications [Komu et al]

● draft-mkomu-hip-native-api-00.txt

● Application Programming Interfaces for Host 
Identity Protocol



Questions / Feedback
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