THE HOST IDENTITY INDIRECTION INFRASTRUCTURE (Hi^3) : Analysis of the cost

Talk for Host Identity Protocol RG, IETF63

DMITRY KORZUN, ANDREI GURTOV, PEKKA NIKANDER

http://infrahip.hiit.fi
Helsinki Institute for Information Technology

August 2005

Outline

- Hi³ architecture
 Separating control and data
 Requests to the control plane
- What problems are important?
- Analysis
 Latency of requestsWorkload
- Conclusion

Hi^3 architecture: Rendezvous enhancement

- HIP rendezvous server →
 overlay rendezvous infrastructure
 (distributed, decentralized)
- Trusted third-party for establishing and keeping the data plane connectivity

HIP messages (control plane):

- base exchange
- mobility exchange

• . . .

Hi^3 architecture: Naming implementation

- Public/private trigger pair to identify a host
- Public identifier is HIT-based
- Private identifier is constructed by the end-host
- Chord lookups in $O(\log N)$ time

public private

To host S: $[HIT_S|ID_S] \rightarrow [ID_S|IP_S]$

To host C: $[HIT_C|ID_C] \rightarrow [ID_C|IP_C]$

What problems are important?

Utilization

$$U_{\text{CPU}} = ?, \quad U_{\text{COM}} = ?$$

Scalability

```
i^3 size estimation: N = N(\text{workload}, \text{latency})
```

Resilience to zombie attacks

```
proportion \#zombies : N?
```

- Short-term and long-term performance
 - Balance, stable state, small changes, capacity
- Forwarding performance
- Consistency/availability/stability balance

Analysis: Basic costs

• Transmission cost:

 τ : node-to-node trip time

 $au_A^{
m Hi3}$: host-to-node or node-to-host trip time

 τ_{CS} : one-way trip time

Processing cost:
 μ: forwarding cost

 μ_{pr} : HIP cryptography cost

• Chord lookup:

 $(\tau + \mu)O(\log N)$: with high probability

 $\alpha(\tau + \mu) \log N$: upper bound (const $\alpha > 0$)

Analysis: Latency

Request type	$\mid k \mid$	$T^{\mathrm{Hi3}} = k\tau^{\mathrm{Hi3}}$	$T^{\mathrm{out}} = k \tau^{\mathrm{out}}$
Pure association setup	4	$6\alpha(\tau + \mu)\log N$	$4\tau_C^{\text{Hi}3} + 2\mu_{\text{pr}} + 4\tau_S^{\text{Hi}3}$
Opt. association setup	4	$2\alpha(\tau + \mu)\log N$	$3\tau_C^{\text{Hi3}} + 2\mu_{\text{pr}} + \tau_S^{\text{Hi3}} + \tau_{SC}$
Loc. update, $A \in \{C, S\}$	2	$\tau + \mu$	$2 au_A^{ m Hi3}$
Double-jump	2	$\alpha(\tau + \mu) \log N$	$\tau_C^{\text{Hi}3} + \tau_S^{\text{Hi}3} + \tau_{SC}$
HIT insertion, $A \in \{C, S\}$	2	$2\alpha(\tau + \mu)\log N$	$2 au_A^{ m Hi3}$
HIT refreshment, $A \in \{C, S\}$	4	$2(\tau + \mu)$	$4 au_A^{ m Hi3}$

k: packets in a request

 $\tau^{\mathrm{Hi}3}$: internal latency of a packet

 τ^{out} : external latency of a packet

 T^{Hi3} : internal latency of a request

 T^{out} : external latency of a request

 $L = T^{Hi3} + T^{out}$: request latency

Analysis: Internal latency

Optimized association setup, $T_{
m so}^{
m Hi3}$

$$\mu = 1$$
ms, $\alpha = 1/2$

• Slowly increasing latency even in the worst case (with lookups)

$$T^{\text{Hi}3} = (\tau + \mu)O(\log N)$$

- Several seconds for $O(\log N)$ -requests
- Primary factors:
 - Lookup cost $O(\log N)$
 - node-to-node trip time τ for a lookup path
- Design solutions:
 - $-i^3$ caching
 - trigger allocation

Analysis: Workload pattern

Parameters:

H: #end-hosts

 λ : rate of a end-host

r: #nodes loaded by a request

Workload metric:

$$W = \frac{\lambda Hr}{N}$$

i.e., how many packets a node serves

Analysis: Workload estimates

Request type	Rate, λ	#(i^3 nodes), r	Workload, W
Pure association setup	$\lambda_{ m s}$	$6\alpha \log N$	$W_{\rm s} = \frac{6\alpha\lambda_{\rm s}H\log N}{N}$
Opt. association setup	$\lambda_{ m so}$	$2\alpha \log N$	$W_{\rm so} = \frac{2\alpha\lambda_{\rm so}H\log N}{N}$
Location update	$\lambda_{ m u}$	1	$W_{\rm u} = \frac{\lambda_{\rm u} H}{N}$
Double-jump	$\lambda_{ m u} P_{ m us}$	$\alpha \log N$	$W_{\rm us} = \frac{2\alpha\lambda_{\rm u}P_{\rm us}H\log N}{N}$
HIT insertion	$\lambda_{ m i}$	$2\alpha \log N$	$W_{\rm i} = \frac{2\alpha\lambda_{\rm i}H\log N}{N}$
HIT refreshment	$\lambda_{ m r}$	2	$W_{\rm r} = \frac{\lambda_{\rm r} H}{N}$

Analysis: Workload behavior

$$\mu = 1 \text{ms}, \quad \lambda_{\rm s} = \lambda_{\rm so} = 30 \text{min}^{-1}$$
 $\lambda_{\rm u} = 1 \text{min}^{-1}, \quad P_{\rm su} = 10^{-2}$

H = # end-hosts

• Rapidly decreasing workload:

$$W = O\left(\frac{\log N}{N}\right) + O\left(\frac{1}{N}\right)$$

• Reasonable proportion between end-hosts and nodes:

$$H: N \sim 10^6: 10^2$$

• Workload/latency trade-off:

$$N \approx C \cdot \frac{T^{\text{Hi3}}}{W}$$

Conclusion

Simple assumptions

 i^3 : τ , $O(\log N)$ -requests end-hosts: λ , H

Coarse estimates

basic trends and their order

Reflection in design

More accurate model?

- forwarding packets
- heterogeneity
- network flows approach