Tunnel End-point Discovery

draft-palet-v6ops-tun-auto-disc-03.txt

- IPv6-in-IPv4 Tunnel End-point Discovery
 - □ Is this something we have to provide?
 - OA different discussion...
 - ☐ Scope of the Discovery
 - Only in network of the ISP where the user attaches to
 - ▷ "Third party" discovery is out of scope
 - □ Assumptions
 - Must work through a (non-upgraded) NAT/router
 - The user may have his own NAT/router box(es)
 - OIP addresses may be private and/or dynamic
 - □ Proposed solutions
 - Well-known unicast address ("anycast") for initial discovery
 - ONS (in forward or reverse tree)
 - DHCP and PPP options
 - OSLP

TEP Discovery - anycast

- □ Main properties
 - Well-known v4 unicast address ("anycast")
 - Only for initial discovery of the "real" unicast address
 - Typically would not be advertised in eBGP
- □ Advantages
 - OWorks through NATs, etc. very well
 - Seems to work based on DNS root anycast and 6to4 anycast
- Disadvantages
 - ○ISPs need to be careful in filtering the prefix to prevent hijacks

 ▷Applies to those ISPs who provide the service
 - Routing operations may be more difficult e.g. in enterprises than changing DNS

TEP Discovery - forward DNS

- □ Main properties
 - Ouse of DNS search path to discover _v6tc.example.com
 - ONS search path learned through DHCP, etc.
- □ Advantages
 - Adding the tunnel server requires just inserting an A record
- □ Disadvantages
 - ONAT boxes w/ DHCP pool have to pass through the search path
 - Forward DNS search path and topology do not always map well
 - Olf no search path, the queries might end up at the root servers

TEP Discovery - reverse DNS

- □ Main properties
 - ODefine a new "TEP" record
 - Prepopulate all the IP addresses of potential clients with the record
 ▶"1.2.3.4.in-addr.arpa. IN TEP v6tc.example.com"
 - The clients would look up TEP record of their own IP address
- □ Advantages
 - Maps well to the topology
- □ Disadvantages
 - Assumes prepopulation of the whole IP address space
 ▷ DNS operations pain unless the IP address space mgmt scripts can be modified?
 - Assumes that all RFC1918 space is also prepopulated ▶ and the box is not authorative for RFC1918
 - It takes a while to develop a new RR type.

TEP Discovery - DHCP or PPP

- □ Main properties
 - ODefine a new DHCPv4 or PPP option to carry the information
- □ Advantages
 - DHCPv4 options are easily defined, "de facto" config method
- Disadvantages
 - ODoes not work through non-upgraded NAT/router boxes
 - Sufficient number of users don't run DHCP or PPP
 ▶ Would have to define multiple options
 - There has been resistance to new PPP options

TEP Discovery - SLP

- ☐ Main properties
 - Use Service Location Protocol
- □ Advantages
 - Not really any, except the spec is out there...
- Disadvantages
 - Multicast cannot be assumed, so a Directory Agent needed
 - Then, configuring the address of DA is a problem (e.g. DHCP)
 - ▶Back to square one..

- TEP Discovery Summary/Discussion
 - □ If this must work through non-upgraded NAT boxes..
 - DHCP and PPP are non-starters
 - Forward DNS may have issues, are these serious enough?
 - □What's left?
 - Well-known unicast address
 - Reverse DNS prepopulation
 - Manual configuration.. (obviously)
 - □Where to go next?