Path MTU discovery 11/09/04 draft-ietf-pmtud-method-03.txt

Matt Mathis <mathis@psc.edu> John Heffner <jheffner@psc.edu> Kevin Lahey <kml@patheticgeek.net>

Packetization Layer path MTU discovery

- Start with 1kByte MTU
- Probe with larger packets to test MTUs
 - Provisionally raise MTU if successful
 - (Optional) Process RFC1191 ICMP
 - Do not reduce TCP window on lost probe
- Verify provisional MTU for 1 RTT
 - Additional losses imply problems

Layered Implementation

- State kept in path information cache in IP layer
 - Probing state and timers
 - Recent successful and unsuccessful probe sizes
- Algorithm runs in the Packetization Layer
 - PL cuts the data into packets
 - Probing and verification are intrinsically PL specific
 - New description facilitates sharing the rest of the code
 - The search heuristic and error logic can be shared

Key Properties

- Robust
 - Tolerates ICMP delivery problems
 - Verification phase addresses spurious delivery
- Progressive interoperation with classical pMTUd
 - Start large and process all ICMP
 - Start small and ignore all ICMP
- Parallel to congestion control
 - End to end algorithm: use loss as the feedback to adjust window or packet size
 - Well understood limitations

Robust

- Primary design goal: Do no harm
- Avoid problems with RFC 1191 pMTUd
 - Not affected by ICMP delivery problems
 - Not affected by tunnels and encapsulation
 - Not exposed to RFC 2923 problems
- Minimal new exposure
 - Spurious delivery of oversized packets
 - Verification phase provides protection

Progressive deployment

- Enhance RFC1191 pMTUd
 - Start with large MTU and process ICMP
 - Use PLPMTUD iff repeated timeouts
 - Maximally robust from a deployment perspective
- Replace RFC1191 pMTUd
 - Start with small MTU, ignore all ICMP PTB messages
 - Search upwards to raise MTU
 - Maximally robust from a security perspective

Parallel to Congestion Control

- End-to-end algorithm
- Adjust data stream parameters:
 - Packet or window size
- Use packet loss for feedback
 - Interactions with Congestion Control are specified in RFC2119 standards language
- Better fit with end-to-end principle(?)

New with -03 draft

- Generalized to be PL protocol independent
 - Requirements for PL protocols
 - Bi-directional, timely and accurate delivery reports
 - Mechanisms for probing and supporting provisional MTU
 - Distilled descriptions for selected PL protocols
 - TCP, SCTP, IP fragmentation, UDP/application
- Clarified interactions between PLPMTUD and congestion control

What next?

- Implementations
- A MIB
 - AUGMENT the IP (routing) MIB?
- All known document holes are fairly minor
 - Better support for short/small flows
 - Add more PL protocols
 - RTP: the variable length payload