
Stackable GSS Pseudo-Mechs

draft-williams-gssapi-stackable-pseudo-mechs-00
Nicolas.Williams@sun.com

60th IETF KITTEN BoF

History

● 2000: LIPKEY [RFC2847], basic-over-SPKM
● Early-2003: CCM-BIND (I-D), first stackable

GSS-API pseudo-mechanism
● 58th IETF: hallway discussion of mechanism

stacking resulted in:
– Need for abstraction
– Ideas for other stackable pseudo-mechs
– Need to think about negotiation, complexity

● 60th IETF: 1st I-D on stackable pseudo-mechs

Glossary
● Concrete mechanism
– A GSS-API mechanism

that can be used as is
● Pseudo-mechanism
– A GSS-API mechanism

that cannot be used
without reference to a
concrete mechanism;
e.g., SPNEGO

● Stackable pseudo-mech
– A mechanism that is to

be “stacked above” or
combined with a
composite or concrete
mechanism

● Composite mechanism
– A combination of a

stackable and a
composite or concrete
mech

Introduction

● The GSS-API is a generic interface to security
mechanisms
– Mechanisms are addressed by their OIDs
– Mechs define: context tokens, per-msg context

tokens, and sundry GSS details, such as name forms
● GSS mechanisms exist for: Kerberos V, PKIX

(SPKM), and others, such as Microsoft's
NTLMSSP, Sun's mech_dh

● GSS pseudo-mechanisms exist for: negotiating
mechanisms (SPNEGO)

Introduction (cont.)

● In the process of developing a new lightweight
GSS-API pseudo-mechanism for NFS we
expanded on the GSS-API notion of channel
bindings and the new mechanism (CCM-BIND)
came to be about channel bindings

● At the same time we developed the notion of GSS
mechanism stacking so we could leverage
existing GSS mechanisms in the construction of
new ones
– CCM-BIND being one example

Introduction (cont.)

● Composite mechanisms have OIDs, just like any
other mechanism
– Composite mech OIDs are made by prefixing the OID

of the stackable mechanism to that of the mechanism
stacked below it

● Stackable mechs can be stacked over other
composite mechs, making a stack

● Composite mechs are used just like concrete
mechs

LIPKEY: Almost a Stack

● LIPKEY is a GSS mechanism that does the
SPKM equivalent of basic-over-SSL
– LIPKEY first uses SPKM-3 to establish a security

context that authenticates the acceptor (using its cert)
but not the initiator

– then it sends the initiator's name and password
confidentiality protected with the SPKM-3 context

● But LIPKEY is not an example of a stackable
pseudo-mech, though it could have been
– No OID prefixing; LIPKEY only works over SPKM

Ideas for Stackable Pseudo-Mechs

● Proper channel binding and negotiation
– CCM-BIND

● PFS
● Compression
● Basic-over-*
● Three-party authentication
● etc...

Example: PFS

● Let's call this the PFSMECH
● PFSMECH context tokens might contain:
– Context tokens for mech stacked below
– DH public parameters

● PFSMECH would have its own per-msg tokens
– Perhaps based on existing design, such as krb5's

● One PFSMECH OID prefix per-{group,
ciphers}? Or other scheme?
– This would eschew GSS-API lameness w.r.t. QoPs

Problems

● Not all mechanism stacks will make sense
– {pfs, compress, krb5} is no good, but {compress, pfs,

krb5} is Ok
● Complexity
– Many valid composites
– How to negotiate mechanisms?

● GSS_Indicate_mechs() and friends

Problems (cont.)

● Security analysis of composite mechanisms
– What combinations make sense, which don't?
– What are the attributes of a composite mechanism?

Solutions

● GSS_Indicate_mechs() and friends MUST NOT
indicate stackable mechs

● GSS_Indicate_mechs() and friends MUST NOT
indicate composite mechs unless explicitly
configured to do so (and even then...)

● Add new APIs for indicating stackable/
composite mechs

Solutions (cont.)

● Users of composite mechs know what features
they want from them, but why should they know
the OIDs of the composite mechs they need?
– Add APIs for inquiring mechs for/by their attributes

● These new APIs are all OPTIONAL
– Without them apps have to hardcode composite mech

OIDs – no big deal
● Mechanism attributes have OIDs and symbolic

names (GSS_C_MA_*)

Solutions (cont.)

● Stackable pseudo-mechanism specifications
should describe
– Constraints on mechanisms, by attributes, that can be

stacked below
– How to compute the attributes of mechanisms

composed with them in terms of the attributes of the
mechanisms stacked below

Benefits of the New APIs

● No need to hardcode mechanism OIDs anymore
– e.g., SSHv2 implementations MUST NOT use

SPNEGO, but SPNEGO might get new OIDs[*]
● Let SSHv2 implementations query for/by mechanism

attributes and ignore any mechs that negotiate mechs
● Mechanism attributes give us a way to formalize

the descriptions of mechanisms
– Hardcoding attrs' symbolic names is better than

hardcoding mechanism OIDs; see above

Benefits of the New APIs (cont.)

● Indicating mechs by attributes makes GSS-API
applications more general
– Unless the new mech-specific GSS-API extensions

New APIs

● GSS_Indicate_mechs_by_attrs()
● GSS_Inquire_mechs_for_attrs()
● GSS_Display_mech_attr()
● [utility] GSS_Compose_OID()
● [utility] GSS_Decompose_OID()
● GSS_Indicate_negotiable_mechs()
● GSS_Negotiate_mechs()

Mechanism Attributes

● Concrete, stackable, composite, glue[*], other
● Deprecated (e.g., old krb5 mech OID), non-

standard (e.g., GSI's SSL mech)
● Authenticates initiator, acceptor, both, neither
● Supports credential delegation
● Supports confidentiality and/or integrity

protection, replay, out-of-sequence detection
● PFS, channel bindings, compression
● Etc...

Mechanism Attributes (cont.)

● GSS_C_MA_*
● Mech attrs are identified by symbolic names and

OIDs
– So that SET OF mechanism attributes is SET OF

OBJECT IDENTIFIER
– Which leverages existing C-Bindings for OID sets

● Keeps the API simple, stupid

Internet-Drafts

● draft-ietf-nfsv4-ccm-02.txt
● draft-williams-gssapi-stackable-pseudo-mechs-

00.txt

Q/A

● Questions?
● Please review

