
On Channel Bindings

draft-ietf-nfsv4-channel-bindings-02.txt
Nicolas.Williams@sun.com

(to be presented at 60th IETF NFSv4 WG and KITTEN BoF meetings)



Introduction

● Channel bindings allow session protection at one 
network layer to be delegated to session 
protection at another by proving that there is no 
MITM at the lower layer

● Why?  Performance plus security.
● Concept first described in GSS-APIv2 (see 

rfc2743 and rfc2744)
– But specs were lacking



Formal Definition (rough; see I-D)

● Mutual authentication at app-layer
● App-level end-points exchange integrity-

protected proof of knowledge of “channel 
bindings” for lower layer, secure channel

● Channel bindings data “name” a channel
– must be cryptographically bound to the named 

channel



Examples: TLS, SSHv2

● Channel bindings for TLS: client and server 
finished messages

● Channel bindings for SSHv2: session ID
● These are cryptographically bound to the initial 

TLS or SSHv2 key exchange
– SSHv2 re-keys are bound to the initial key exchange

● {TCP, SCTP, UDP}/IPsec?  It can be done – see 
later slides

● NULL bindings?  Better than AUTH_SYS...



The GSS-API & Channel Bindings

● RFC2743 speaks of channel bindings
– Provides no structure, just “OCTET STRING” and 

little guidance
● RFC2744 provides C (!) structure
– And little guidance beyond bindings to network 

addresses
● GSS-API channel bindings are not negotiable
– Either apps use them, or don't



The GSS-API & Channel Bindings 
(cont.)

● To make GSS channel bindings useful we
– Provide a generic structure for channel bindings data 

based on rfc2744's C struct and rfc1964's language-
neutral interpretation of same

– Provide guidance, specs[*] for several types of 
channel bindings (to TLS, SSHv2, Ipsec)

– Provide for negotiation of channel bindings by adding 
new stackable GSS pseudo-mechs and using same to 
leverage existing negotiation of GSS mechs
● Apps offer/select these mechs when they have bindings



Benefits: Overview

● Avoid double encryption when possible, e.g.,
– SSHv2 over IPsec
– SASL over TLS
– NFS over IPsec, SSHv2, etc...
– Leverage IPsec acceleration in HW
– Remember: secure binding of two channels

● Reduce number of active crypto contexts (NFS)
● Facilitate RDDP over IPsec



And w/o Channel Bindings?

● If the lower layer's authentication facilities satisfy 
applications needs then there's no need for 
channel bindings

● But we expect IPsec w/ user certs to be rare
– And GSS-API extensions to IKEv2 to be slow in 

coming to market
● Plus, apps which multiplex multiple users onto 

one connection, as NFS does, can't use IKE 
authentication
– And one conn. Per-user, for NFS, is a non-starter



Performance Benefits: NFS

● NFS clients typically establish more GSS-API 
security contexts than they absolutely must
– Several per-{user, client, server}; adds up!

● With channel bindings none of those contexts are 
used for session protection
– Fewer active crypto contexts → typically lower 

crypto HW overhead
● Leverage HW-acceleration at lower layers (IPsec)



Performance Benefits: RDDP

● RDDP layers between the transport and the 
application to facilitate receiver zero-copy by 
addressing interesting buffers in app payloads 
and directing RNIC to directly place data

● App data must be in cleartext relative to RDDP 
header, else app-layer crypto must be supported 
by RNICs (no way)
– Channel bindings makes this possible
– Some RNICs can be expected to accelerate ESP/AH



Performance Benefits: NFS w/ RDDP

● Duh!



What about IPsec?

● What's an IPsec channel?
– A TCP (or SCTP) connection protected with 

transport-mode SAs with same protection/ 
authenticated IDs for duration of connection

– A UDP datagram protected by transport mode SA
– etc...

● Apps need new APIs to deal with IPsec channels



What about IPsec? (cont.)

● Channel Bindings data for IPsec:
– SA IDs authenticated by key exchange protocol

● Latched in SPD for connections to the connections' traffic 
selectors (i.e., protocol #, port #s)

– Protection parameters
● ESP or AH, enc algorithms

– Traffic selectors for connection/datagram
● protocol number, port numbers (SCTP has more)

● Cryptographic binding is indirect, through 
authentication, APIs, SPD



What about IPsec? (cont.)

● Apps need APIs to retrieve/specify some of these 
items, see:
– draft-ietf-ipsp-ipsec-apireq-00.txt
– draft-ietf-nfsv4-channel-bindings.txt



What about Anonymous IPsec?

● Huh?  Anonymous IPsec?  An oxymoron?
– No!  Apps that provide for authentication may not 

care about IDs authenticated by IPsec.
● And why should one have to deploy multiple authentication 

infrastructures?
● With IPsec IDs as part of the bindings anon IPsec 

can be constructed thusly
– With non-pre-shared, self-signed certs
– Use cert public keys as IDs
– Policy should allow apps like NFS to use this



Channel Bindings Structure, 
Constructor Functions

● draft-williams-gssapi-channel-bindings-00.txt
– Not yet published; missed cut-off for this meeting

● Generalizes rfc2744 C structure of bindings
● Specifies bits to be passed to GSS-API for 

channel bindings for TLS, SSHv2, IPsec
● Specifies utility contructor function APIs for 

formatting same



CCM-BIND

● GSS pseudo-mechanism
– Stacks atop concrete mechs, like Kerberos V
– draft-ietf-nfsv4-ccm-02.txt

● Properly handles channel bindings proof 
exchanges
– Establishes security context for concrete mech
– Initiators prove channel bindings to acceptors and 

vice-versa
● Offering CCM-BIND signals willingness to use 

channel bindings



CCM-MIC

● GSS pseudo-mechanism (not stackable)
● Uses previously established, live CCM-BIND 

security contexts to establish CCM-MIC contexts 
(bound to the same channel)

● CCM-MIC security context establishment is 
cheaper than CCM-BIND
– Uses only MICs from concrete mech stacked below 

CCM-BIND in the construction of CCM-MIC context 
tokens

● Aim: further perf improvements for NFS



SASL w/ Channel Bindings

● Use SASL GSS-API spec
● And use CCM-BIND
● Negotiate SASL mechanisms as usual
– If CCM-BIND is selected then use channel bindings
– Else don't

● SASL security layers for CCM-BIND are noop



SPNEGO and Channel Bindings

● Require use of SPNEGO mech-specific GSS 
extensions, GSS_Spnego_set/get_neg_mechs() 
[rfc2478]
– App must explicitly request CCM-BIND this way and 

must pass channel bindings
● SPNEGO should not pass channel bindings to 

traditional mechs (see stackable mechs I-D, 
slides)

● Negotiate mechs as usual



Stackable GSS Pseudo-Mechs

● In designing CCM-BIND we noticed a pattern 
worth abstracting[*]: stackable pseudo-mechs

● Optional interfaces for “indicating” such mechs 
are needed

● Optional interfaces for inquiring mechs for/by 
“attributes” also look to be useful; see:
– draft-williams-gssapi-stackable-pseudo-mechs-00.txt
– Presentation at KITTEN BoF



Internet-Drafts

● draft-ietf-nfsv4-channel-bindings-02.txt
● draft-ietf-nfsv4-ccm-02.txt
● draft-ietf-ipsp-apireq-00.txt
● draft-williams-gssapi-channel-bindings-00.txt
– (missed new I-D cut-off)

● draft-williams-gssapi-stackable-pseudo-mechs-
00.txt



History

● 2003/02/25, 1st CCM I-D
● CCM -00 I-D led to 1st channel bindings I-D
– Which led to discussion of channel bindings to IPsec

● First presented to SAAG at 58th IETF
– Original IPsec channel bindings proposal proved 

controversial, flawed
– Subsequently led to current channel bindings to IPsec 

proposal
● This and other work aroung the GSS-API led to 

the KITTEN BoF at this IETF meeting



Q/A

● Questions?
● Please review


