

Some Possible Extensions of the
Current LFB Model

<draft-blake-forces-attrib-00.txt>

 Steven Blake
slblake@modularnet.com

 Zsolt Haraszti
zsolt@modularnet.com

Presentation available at:

http://www.petri-meat.com/slblake/
networking/drafts/forces-attrib.pdf

ForCES Model Schema

● Schema defines syntax for representing FE
attributes and capabilities.

● Schema defines a syntax for representing LFB
class attributes and capabilities:
– Attributes include tables, flags, etc.
– Capabilities include the max range of a

particular attribute (e.g., max table size).
● Requirement to define LFB classes such that each

represents “a fine-grained, logically separable and
well-defined packet processing operation in the
datapath”.

● Model should support a generalized set of LFB
class definitions that can be used to model any
functional implementation.

LFB Model

● Key characteristics:

– Flat (non-hierarchical, non-nested) layer of
interconnected LFBs within a particular FE.

– Exclusive ownership of attributes:
● Each LFB has its own resources/attributes, not

accessible to others.

– Attributes configured by ForCES messages
addressed to that LFB only (or a subset of all LFBs
of that class).

Problem Statement

● There is a problem between the current, simple
LFB model, and the requirement to define LFB
classes so that each is fine-grained.

● This is due to lack of support for one or more of
the three following capabilities:

– Efficient, bundled configuration of multiple LFBs

– Attribute sharing between LFBs

– Inter-LFB control

Example 1: Unicast LPM and RPF

● Unicast route lookup depends on an LPM
Classification of the IP destination address, as
well lookup of the appropriate next-hop info.

● RPF check for blocking source address spoofing
depends on LPM classification of the IP source
address, as well as comparison of the incoming
interface to the next-hop info.

● Ideal LFB topology:

– LPM (source IP) -> Next-hop (RPF) -> LPM
(destination IP) -> Next-hop (normal)

● Ideally, the LPM and next-hop databases are
shared between both sets of LFB instances.

Example 2: ARP and L2 Address Resolution

● ARP might be offloaded into a LFB in a FE.

● ARP LFB needs to update the L2 Address
Resolution table, which would be an attribute of
a L2 Address Resolution LFB.

● These two LFBs are not necessarily adjacent:

– ARP function might sit on the “ingress” side of a
FE.

– L2 address resolution function might sit on the
“egress” side.

Example 3: Interface MIB Counters

● Some Interface MIB counters are incremented
exclusively of others:

– Ex/ ifInUcastPkts or ifInErrors

– There must be a common decision point where one
or the other of these counters is incremented.

– Ideally there is only one LFB that needs to be
queried to retrieve all Interface MIB counters.

– Solutions:
● One big IP Interface LFB which performs all header

verification tests to ensure that ifInErrors should not
be incremented.

● Split LFBs (e.g., IP Interface and IP header
verification) that share the counter table.

Bundled Configuration

● There is a conflict between the goals of:

– Good functional separation between LFBs (e.g.,
high-granularity), and

– Efficient, one-step configuration of a certain
forwarding operation, which begs for a single,
complex LFB.

● In the absence of LFB attribute sharing, it may
be desirable for the model and protocol to
support the simultaneous configuration of
attributes of multiple LFBs, to ensure
consistency, and to simplify the CE software.

● Support for atomic transactions in the ForCES
protocol may be sufficient to cover these cases
(TBD).

Attribute Sharing
● In an implementation, two functions that are not

adjacent in a LFB topology graph may share
tables for efficiency:

– The LFB model should not impose additional
configuration operations that are not required in
the implementation.

– The LFB model should not introduce indeterminate
states in the FE (e.g., two LFB tables configured
differently that are shared in an implementation).

● This problem could be solved by:

– Extending the schema to permit sharing of
attributes between LFB classes, or instances of the
same class.

– Defining some attributes as belonging to the FE
instead of individual LFB classes.

Inter-LFB Control

● One LFB may need to configure the attributes of
another LFB (Example 2). This could be
achieved by:

– LFB attribute sharing

– Special control metadata forwarded with packets
between the LFBs

– Inter-LFB control paths in the LFB topology

Possible Model Extensions

● Ideally, one or two extensions to the model
schema would be sufficient to solve all three
problems.

● Requirements:

– Model extensions should not impose any extra
burden on the definition of LFB classes that do not
benefit from them.

– Use of these extensions in a LFB class definition, or
in LFB instances within a particular FE, should be
elective.

– Non-explicit extensions (e.g., hidden sharing or
control paths) should be avoided.

Possible Model Extensions (2)

● Dispatcher (proxy) LFB:

– Not in the datapath, but used as a protocol proxy
to configure two or more LFBs.

– Solves: Bundled configuration

● Protocol messages addressing multiple LFBs:

– Solves: Bundled configuration

● Nested LFBs:

– A LFB could be decomposed into a graph of simpler
LFBs, sharing attributes of the parent.

– Solves: Bundled configuration, Shared attributes

Possible Model Extensions (3)
● FE-level attributes:

– Some attributes accessed by LFBs could be defined
 at the FE level.

– Solves: Shared attributes

● Resource soft-links/LFBs exporting certain
attributes to other LFBs:

– Solves: Bundled configuration, Shared attributes,
Inter-LFB control

● Decoupling nodes in the LFB topology from LFB
instances:

– One LFB instance may show up in the topology as
two or more nodes.

– Still leads to complex LFBs

– Solves: Shared attributes, Inter-LFB control

Possible Model Extensions (4)

● Configuration/control channels between LFBs:

– Show up in the LFB topology as special (non-
packet) paths.

– Solves: Bundled configuration, Inter-LFB control

● List above is not exhaustive.

Summary

● The ForCES model will likely need one or more
extensions.

● Extensions should be:

– Backwards compatible

– Little or no effect on mature LFB definitions (not
many at the moment, however).

– Optional (in LFB class definition or use in LFB
instances)

– Explicit

● Preferably only one or two extensions are
needed.

● Further analysis is needed.

