
Check MIB
<draft-nunzi-check-mib-00.txt>

Giorgio Nunzi, Juergen Quittek,
Marcus Brunner, Thomas Dietz

{nunzi|quittek|brunner|dietz}@netlab.nec.de
59th IETF meeting, DISMAN session

IETF 59 DISMAN 2

General Problem Statement
• DISMAN has developed standards for distributed

management including
w Script MIB
w Schedule MIB
w Expression MIB
w Event MIB
w . . .

• The standards are designed to cover rather general
problem spaces

• They may not fit well for one or the other specific
problem

• Making them general also made them more heavy-
weight
w This is particularly relevant if you want to delegate simple

functions to a large set of very light-weight devices

IETF 59 DISMAN 3

Specific Problem Statement
• Our concrete problem was managing several

hundreds of base stations (NodeBs) in IP-based 3G
and 4G mobile access networks
w Applies also to ADSL and cable modem management

• These devices need to undergo regular health
checks (with different significance)
w connectivity in control layer
w configuration of radio frequencies per attached antenna
w load statistics, radio link error statistics
w . . .

• The NMS should be informed immediately about
failed health checks.

• Doing this by checking managed objects at all
managed nodes from a central NMS does not scale
sufficiently.

IETF 59 DISMAN 4

Investigates Approaches
• Management by Delegation:
w divide the number of managed nodes into

groups with reasonable size
w create a management mid-level
w have a mid-level manager for each group
w --> this did not match well the existing

management infrastructure
• Highly distributed management
w delegate all health check to the managed nodes
w perform health checks locally
w --> our choice

IETF 59 DISMAN 5

Local Health Check
• Options
w Script MIB
w Expression MIB combined with Event MIB
w partially hard coded health check
w completely hard coded health check

• Script Mib definitely too heavy-weight
• Hard coding not flexible enough
• Expression/Event MIB still not really light-

weight
• Our choice: non-standard, partially hard

coded health check

IETF 59 DISMAN 6

Partially Hard Coded
• Supporting only two kinds of operations
w compare object values with constants
w logical and operation on results of compare

operations
• Added a set of useful features
w severity of failed comparison
w max severity of all failed comparisons
w notification on max severity threshold
w health checks performed on demand (polling) or

regularly (given interval)
w number of failed comparisons
w list of failed comparisons

IETF 59 DISMAN 7

Rule Table
• Defines compare operations per OID
• First part of index is checkResultName
• Single entry apllies to a single columnar or non-columnar

object
w checkRuleName SnmpAdminString

-- index
w checkRuleOid OBJECT IDENTIFIER
w checkRuleValue RuleValue

-- octet string
w checkRuleOperation INTEGER {
ß noOperation(0),
ß unequal(1), equal(2),
ß less(3), lessOrEqual(4),
ß greater(5), greaterOrEqual(6),
ß delta(7) }

w checkRuleSeverity SeverityConfigured
w checkRuleRowStatus RowStatus

IETF 59 DISMAN 8

Result Table
• Defines results of health checks
• Single entry apllies to a single columnar or non-columnar object
w checkResultName SnmpAdminString,

-- index
w checkResultSeverity SeverityReturned,

-- max severity of all failed rules
w checkResultSize Unsigned32,

-- number of failed rules
w checkResultTime TimeStamp,
w checkResultInterval TimeInterval,
w checkResultSeverityThreshold SeverityConfigured,

-- triggering a notification if severity exceeds
w checkResultStorageType StorageType,
w checkResultRowStatus RowStatus

IETF 59 DISMAN 9

Failure Table
• Provides list of failed rules
• Indexed by
w checkResultName,
w checkFailureSeverity,
w checkRuleName

• Just two objects per entry:
w checkFailureSeverity SeverityReturned,
w checkFailureOid OBJECT IDENTIFIER

IETF 59 DISMAN 10

Scalar Capability and Control Objects
• Capability objects
w checkCapabMinCheckInterval TimeTicks
w checkCapabMaxResults Unsigned32
w checkCapabMaxRules Unsigned32

• Control objects
w checkCtrlAdminStatus INTEGER {
ß up(1), -- performing checks
ß silent(2), -- no notifications sent
ß down(3) } -- all checks disabled

w checkCtrlOperStatus INTEGER {
ß up(1), -- performing checks
ß silent(2), -- no notifications sent
ß down(3), -- all checks disabled
ß flushing(4)} -- finishing checks already started

IETF 59 DISMAN 11

Check MIB Status

• Submitted as
draft-nunzi-check-mib-00.txt

• Linux implementation using NET-SNMP
• GUI implementation in Java, integrated

into HP-OpenView
• Product implementation in wireless

access points planned for 2005

IETF 59 DISMAN 12

Conclusion
• We had a problem clearly related to the disman

problem space.
• We were not satisfied with existing standards.
• We developed a more problem specific

solution.
• The solution is still flexible within the narrowed

problem space of health checking.
• We consider two options:
w If there is interest to jointly improve and

standardize this work, the disman WG could
accept it as work item.
w Otherwise, we intend to submit it individually to

the IESG.

IETF 59 DISMAN 13

Monitoring an agent (1)

IETF 59 DISMAN 14

Monitoring an agent (2)

List of checks configured.

IETF 59 DISMAN 15

Monitoring an agent (3)

FailuresTable: red results
are described.

One interface is down
(these values are read
by the NMS, not by the CheckMIB!)

IETF 59 DISMAN 16

Monitoring an agent (4)

Notifications of the check failed

IETF 59 DISMAN 17

Configuring checks

Value is encoded into an OCTECT STRING.

A result is defined trough a set of comparisons on
managed objects.

IETF 59 DISMAN 18

Copy&Paste of checks

•A check can be copied to another host
 (all the rules included are copied).
•A single rule can be copied to another check.

IETF 59 DISMAN 19

Monitoring the network

Checks are read from all agents.

