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General Problem Statement
• DISMAN has developed standards for distributed

management including
w Script MIB
w Schedule MIB
w Expression MIB
w Event MIB
w . . .

• The standards are designed to cover rather general
problem spaces

• They may not fit well for one or the other specific
problem

• Making them general also made them more heavy-
weight
w This is particularly relevant if you want to delegate simple

functions to a large set of very light-weight devices
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Specific Problem Statement
• Our concrete problem was managing several

hundreds of base stations (NodeBs) in IP-based 3G
and 4G mobile access networks
w Applies also to ADSL and cable modem management

• These devices need to undergo regular health
checks (with different significance)
w connectivity in control layer
w configuration of radio frequencies per attached antenna
w load statistics, radio link error statistics
w . . .

• The NMS should be informed immediately about
failed health checks.

• Doing this by checking managed objects at all
managed nodes from a central NMS does not scale
sufficiently.
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Investigates Approaches
• Management by Delegation:
w divide the number of managed nodes into

groups with reasonable size
w create a management mid-level
w have a mid-level manager for each group
w --> this did not match well the existing

management infrastructure
• Highly distributed management
w delegate all health check to the managed nodes
w perform health checks locally
w --> our choice
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Local Health Check
• Options
w Script MIB
w Expression MIB combined with Event MIB
w partially hard coded health check
w completely hard coded health check

• Script Mib definitely too heavy-weight
• Hard coding not flexible enough
• Expression/Event MIB still not really light-

weight
• Our choice: non-standard, partially hard

coded health check
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Partially Hard Coded
• Supporting only two kinds of operations
w compare object values with constants
w logical and operation on results of compare

operations
• Added a set of useful features
w severity of failed comparison
w max severity of all failed comparisons
w notification on max severity threshold
w health checks performed on demand (polling) or

regularly (given interval)
w number of failed comparisons
w list of failed comparisons
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Rule Table
• Defines compare operations per OID
• First part of index is checkResultName
• Single entry apllies to a single columnar or non-columnar

object
w checkRuleName              SnmpAdminString

-- index
w checkRuleOid               OBJECT IDENTIFIER
w checkRuleValue             RuleValue

-- octet string
w checkRuleOperation         INTEGER {
ß noOperation(0),
ß unequal(1), equal(2),
ß less(3), lessOrEqual(4),
ß greater(5), greaterOrEqual(6),
ß delta(7) }

w checkRuleSeverity          SeverityConfigured
w checkRuleRowStatus         RowStatus
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Result Table
• Defines results of health checks
• Single entry apllies to a single columnar or non-columnar object
w checkResultName                 SnmpAdminString,

-- index
w checkResultSeverity             SeverityReturned,

-- max severity of all failed rules
w checkResultSize                 Unsigned32,

-- number of failed rules
w checkResultTime                 TimeStamp,
w checkResultInterval             TimeInterval,
w checkResultSeverityThreshold    SeverityConfigured,

-- triggering a notification if severity exceeds
w checkResultStorageType          StorageType,
w checkResultRowStatus            RowStatus
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Failure Table
• Provides list of failed rules
• Indexed by
w checkResultName,
w checkFailureSeverity,
w checkRuleName

• Just two objects per entry:
w checkFailureSeverity   SeverityReturned,
w checkFailureOid        OBJECT IDENTIFIER
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Scalar Capability and Control Objects
• Capability objects
w checkCapabMinCheckInterval TimeTicks
w checkCapabMaxResults       Unsigned32
w checkCapabMaxRules         Unsigned32

• Control objects
w checkCtrlAdminStatus       INTEGER {
ß up(1),       -- performing checks
ß silent(2),   -- no notifications sent
ß down(3)  }   -- all checks disabled

w checkCtrlOperStatus INTEGER {
ß up(1),       -- performing checks
ß silent(2),   -- no notifications sent
ß down(3),     -- all checks disabled
ß flushing(4)} -- finishing checks already started
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Check MIB Status

• Submitted as
draft-nunzi-check-mib-00.txt

• Linux implementation using NET-SNMP
• GUI implementation in Java, integrated

into HP-OpenView
• Product implementation in wireless

access points planned for 2005
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Conclusion
• We had a problem clearly related to the disman

problem space.
• We were not satisfied with existing standards.
• We developed a more problem specific

solution.
• The solution is still flexible within the narrowed

problem space of health checking.
• We consider two options:
w If there is interest to jointly improve and

standardize this work, the disman WG could
accept it as work item.
w Otherwise, we intend to submit it individually to

the IESG.
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Monitoring an agent (1)
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Monitoring an agent (2)

List of checks configured.
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Monitoring an agent (3)

FailuresTable: red results
are described.

One interface is down
(these values are read 
by the NMS, not by the CheckMIB!)
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Monitoring an agent (4)

Notifications of the check failed
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Configuring checks

Value is encoded into an OCTECT STRING.

A result is defined trough a set of comparisons on
managed objects.
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Copy&Paste of checks

•A check can be copied to another host 
  (all the rules included are copied).
•A single rule can be copied to another check.
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Monitoring the network

Checks are read from all agents.


