

DCCP Spec Updates

* * *

[Eddie Kohler, Mark Handley]
UCLA

IETF 59 DCCP Meeting
March 4, 2004

Overview

- Spec looks more different than it is
 - Organizational changes
 - Cleanups from reviewers
- Technical updates
 - Event processing
 - Simplifications discussed in Minneapolis
 - Most significant changes mentioned on mailing list

Organizational Changes

- Rewrote initial material
- Reorganized text
 - Moved specifics of packet processing, validation, etc, out of Header Processing into new sections
- Changed option names, and in some cases semantics, to improve understandability
- Clearer examples
- New (non-normative) state transition diagram

State Diagram

Event processing

- Added event processing pseudocode
- Specific processing steps for all events
- Improved state diagram
 - Added PARTOPEN state: after receiving Response, client must send acknos on all packets until hearing from server
- Checked it out with a finite state model and an exhaustive state walk

Event processing pseudocode

```
*****  
....  
Eighth, check sequence numbers;  
  If S.SWL <= P.seqno <= S.SWH  
    && (P.ackno does not exist || S.AWL <= P.ackno <= S.AWH),  
    Update S.GSR, S.GAR, S.SWL, S.SWH  
Otherwise,  
  Send Sync packet acknowledging P.seqno  
  Drop packet and return  
  
Ninth, check packet type;  
  If (S.is_server && P.type == CloseReq)  
    || (S.is_server && P.type == Response)  
    || (S.is_client && P.type == Request)  
    || (S.state >= OPEN && P.type == Request && P.seqno >= S.OSR)  
    || (S.state >= OPEN && P.type == Response && P.seqno >= S.OSR)  
    || (S.state == RESPOND && P.type == Data),  
  Send Sync packet acknowledging P.seqno  
  Drop packet and return  
  
Tenth, process options;  
  /* may involve resetting connection, etc. */  
  Mark packet as 'received' for acknowledgement purposes  
  On processing Confirm R(Mobility ID),  
    Check that the confirmed Mobility ID is correct  
    If a DCCP-Move was recently processed,  
      Remove any old Mobility ID from table  
...
```

Sequence number validity

- Cleaner rules depend only on packet type (not connection state)
- Previously a DCCP-Sync elicited a DCCP-Sync
 - Not convinced a Sync storm couldn't happen.
 - Add DCCP-SyncAck packet type to avoid possible problems.
- Added section calculating probability of successful sequence number guessing attacks.
 - Suggest using extended sequence numbers if window is greater than 100 packets.

Sequence number validity

Packet Type	Sequence Number Check	Acknowledgement Number Check
DCCP-Request	$SWL \leq seqno \leq SWH$ (*)	N/A
DCCP-Response	$SWL \leq seqno \leq SWH$ (*)	$AWL \leq ackno \leq AWH$
DCCP-Data	$SWL \leq seqno \leq SWH$	N/A
DCCP-Ack	$SWL \leq seqno \leq SWH$	$AWL \leq ackno \leq AWH$
DCCP-DataAck	$SWL \leq seqno \leq SWH$	$AWL \leq ackno \leq AWH$
DCCP-CloseReq	$SWL \leq seqno \leq SWH$	$AWL \leq ackno \leq AWH$
DCCP-Close	$SWL \leq seqno \leq SWH$	$AWL \leq ackno \leq AWH$
DCCP-Reset	$seqno == 0$ or $seqno > GSR$	$GAR \leq ackno \leq AWH$
DCCP-Move	$seqno \geq SWL$	$ISS \leq ackno \leq AWH$
DCCP-Sync	$seqno \geq SWL$	$AWL \leq ackno \leq AWH$
DCCP-SyncAck	$seqno \geq SWL$	$AWL \leq ackno \leq AWH$

- In general, packets are sequence-valid if their Sequence and Acknowledgement Numbers lie within the corresponding valid windows, $[SWL, SWH]$ and $[AWL, AWH]$.

Forward compatibility

- Added Forward Compatibility section
 - Describes how features should be defined to facilitate forward and backward compatibility
 - 1: Use a feature to negotiate the use of an extension, default is “No”
 - 2: Don’t reset odd options or features
- Ignored option proved non-useful, so removed it
- Some existing features were rewritten so they act like extensions:
 - Sequence number transition
 - Check Data Checksum, ...
- Also reserve some options and features for experimental use

Feature negotiation

- Added empty Change option
 - “What’s your current value for this feature?”
- Add empty Confirm option
 - “I didn’t understand your Change option”
- Both make the protocol more explicit
- Simplified state diagram
 - Remove FAILED state—no need to support it if features are implemented as suggested in “Forward compatibility”

Update on open issues from IETF 58

- # NDP
 - Removed in favor of NDP Count option
- Identification and Challenge
 - Removed in favor of DCCP-Sync and DCCP-SyncAck
- Data Dropped requirements in CCID 3
 - Problem is receiver (as opposed to network) congestion
 - CCID 3 draft now suggests manipulating X_{recv} to indirectly limit the transmit rate.

Update on open issues 2

- Packet sizes
 - “CCID x implementations MAY check for applications that appear to be manipulating the packet size inappropriately.”
- Payload Checksum
 - Use SCTP’s CRC-32c
- Service Code Wildcarding
 - Previously allowed DCCP-Request and/or listening socket to wildcard the service code.
 - Potential security confusion.
 - Dropped wildcarding, echo service code in DCCP-Response

CCID 2 and 3

- No other significant changes

So where are we?

- Rev documents, suggest real WG last call immediately after IETF
- Onward and upward

Future Work

- Faster recovery after idle.

- CCID for TFRC-PS

TFRC-PS needs doing in TSVWG

- Fixed rate apps.

Faster recovery after idle

- Open issue as to what the bad consequences are from not slow-starting when a session becomes active again after an idle period.

TFRC-PS

- TFRC is designed for applications that change their sending rate by varying the number of packets sent per second.

Audio applications generally want to send a constant rate of packets/second, and change the compression of each of those packets.

- Research is still needed as to how to modify TFRC to do this safely.

Depending on this research, we need to create a new CCID for TFRC-PS.

Fixed rate applications

- DCCP as currently written assumes data will be transmitted at the congestion-controlled rate.

Some applications are inherently fixed rate.

Some applications have a number of fixed rates they can switch between.

- It should be possible to use TFRC to provide a *reference rate*.

DCCP would tell the application the reference rate, and police the application only if went outside a fairly wide band centered on the reference rate.

Perhaps: $0.5X_{reference} < X_{app} < 2X_{reference}$

May be issues when few flows stat-muxing - need research.