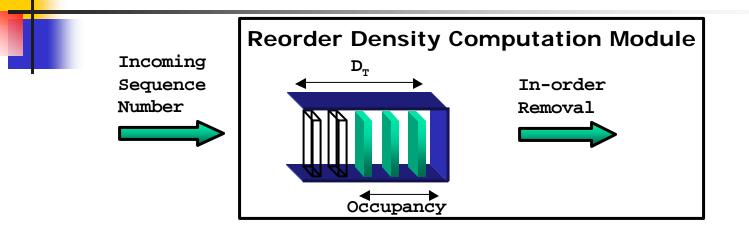
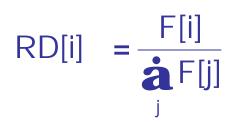
Reorder Density Function A Metric for Packet Reordering


Anura P. Jayasumana

Nischal M Piratla, Abhijit Bare, Tarun Banka, Rick Whitner* & Jerry McCollom* Computer Networking Research Laboratory Colorado State University *Agilent Labs <u>draft-jayasumana-reorder-density-02.txt</u>

Outline

- RD Review
- Properties
- Improvements (LD, ED)
- Discussion


Concept

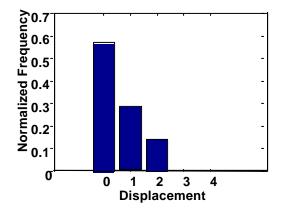
- If a packet with a sequence number higher than the currently expected packet arrives, it is buffered.
- Packets are removed from the buffer, when they become in-order or when the buffer is full.
- Occupancy of the buffer is recorded after each arrival is processed.
- Size of the buffer (D_T) determines when a packet is considered lost or useless.

Terminology

- Buffer Occupancy : Number of packets that arrived out-of-order and are stored temporarily in a hypothetical buffer.
- Buffer Occupancy Threshold (D_T) : Maximum size of the hypothetical buffer.
- Reorder Density (RD) : Density function of the buffer occupancy.

where F[i] is the number of arrival instances where i buffers were occupied.

Examples of RD Computation


Case of no packet loss : [1,2,4,5,3,7,6].

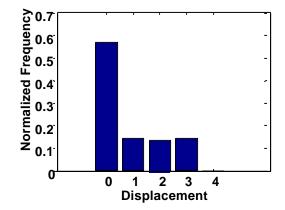
RD Computation Steps:

Expected	1	2	3	3	3	6	6
Arrival	1	2	4	5	3	7	6
D	0	0	1	2	0	1	0
F[D]	1	2	1	1	3	2	4

RD:

Displacement (D)	0	1	2	3
Frequency F[D]	4	2	1	0
Normalized Frequency RD[D]	4/7	2/7	1/7	0

Examples of RD Computation


Case of packet loss : [1,2,4,6,5,7,8] with $D_T=3$.

RD Computation Steps:

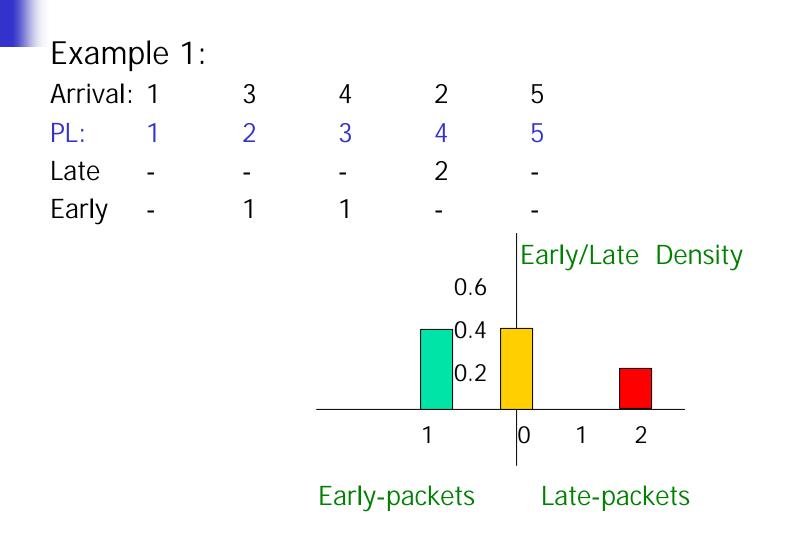
Expected	1	2	3	3	3	3	8
Arrival	1	2	4	6	5	7	8
D	0	0	1	2	3	0	0
F[D]	1	2	1	1	1	3	4

RD:

Displacement (D)	0	1	2	3
Frequency F[D]	4	1	1	1
Normalized Frequency RD[D]	4/7	1/7	1/7	1/7

Properties

- On the fly computation
- Computation Complexity
 - Time complexity : O(N.DT) < O(N²)
 N no of packets
 - Space complexity : Constant (DT)
- Shape of RD is related to the nature of reordering.
- 90th percentile, mean and standard deviation of RD can be used when a simpler metric is required


Properties

- Captures both the number of packets that are out of order as well as the amount by which packets are out-of-order
- A packet is considered lost if and only if the buffer overflows (DT)
- Also useful for applications
 Ex. Resource allocation for recovery from reordering
- Given a reorder density function, we can generate packet sequences that satisfies the reorder density function - Not just a measure!

Late and Early Density:

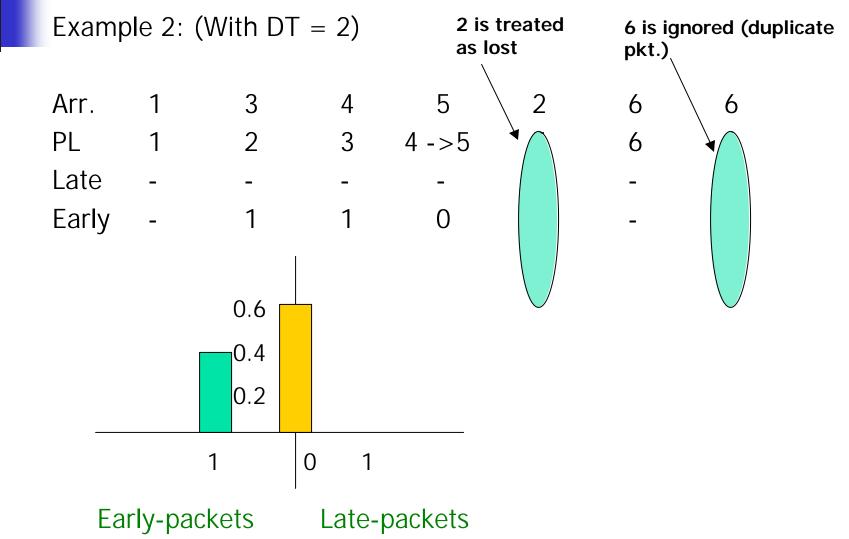
- Place Label (PL)
 - increments for each arrival (subject to DT)
- Late Packet
- Early Packet

Examp	le 1:				
Arrival	: 1	3	4	2	5
PL:	1	2	3	4	5
Late	-	-	-	2	-
Early	-	1	1	-	-

Modifications
Late and Early Density:

Place Label (PL)
increments for each arrival (subject to DT)

Arrival:134567PL:123456


Late and Early Density:

Place Label (PL)

- increments for each arrival (subject to DT)

Conclusion

- RD, ED and LD more completely define reordering
- Order of complexity is still the same
- Extensions Reordering to satisfy a given RD

Follow-up options ??

- Merge basic concept with Morton draft
- Pursue as an alternate draft and/or as an informational RFC
- Other ?