Datagram Congestion Control
Protocol (DCCP) Overview

S BE

Eddie Kohler
UCLA/ICIR

IETF 58 AVT Meeting
November 12, 2003

* A congestion-controlled, unreliable flow of datagrams

 “UDP plus congestion control”

* Also a modern transport protocol

Partial checksums, mobility, DoS resistance, fast connections, ...

* Long-lived flows that prefer timeliness to reliability

Streaming media, Internet telephony, on-line games, ...
 UDP not congestion controlled, apps must implement CC

* Apps want
Buffering control: don’t deliver old data
Different congestion control mechanisms (TCP vs. TFRC)

Low per-packet byte overhead

Congestion control implementation

Experience shows CC is difficult to get right
Integrated acknowledgements, reliable feature negotiation

Accessto ECN
ECN capable flows must be congestion controlled
UDP APIs would find this difficult to enforce

Different congestion control mechanisms —

« TCP-like: quickly get available B/W
Cost: sawtooth rate—halve rate on single congestion event
May be more appropriate for on-line games

More bandwidth means more precise location information; Ul cost
of whipsawing rates not so bad

« TFRC [RFC 3448]: respond gradually to congestion
Single congestion event does not halve rate
Cost: respond gradually to available B/W as well
May be more appropriate for telephony, streaming media

Ul cost of whipsawing rates catastrophic

0.

4,

5.

1.

DCCP A
CLOSED
App opens
REQUEST —— DCCP-Request —>
OPEN <— DCCP-Response <—
OPEN — DCCP-Ack —>
Initial feature negotiation (CC mechanism,...)
OPEN < DCCP-Ack <
Data transfer
OPEN <— DCCP-Data, -Ack, <—
-DataAck
App closes
CLOSING —— DCCP-Close —>
TIME-WAIT <— DCCP-Reset <—

DCCP B
LISTEN
RESPOND
RESPOND
OPEN
OPEN
OPEN

CLOSED
CLOSED

0 1 2 3

01234567890123456789012345678901
—t—totototot ot ottt ot ototototot ot ottt ottt t—t -ttt -+-+

Source Port | Dest Port |
A M St S S A ot

+
|
+
| Data Offset | CCval | CsCov | Checksum |
A At S
|
+
|
+

Type |X| Res | Sequence Number |
S S St ST S S ST TS S TS S S TS S ST TS S S S

Reserved | Acknowledgement Number |
T T P S SO Y P A N S Y S R Y
* Gray portion not on all packet types
Different headers for different packet types (unlike TCP)

Reduce byte overhead for unidirectional connections

0 1 2 3

01234567890123456789012345678901
—t—totototot ot ottt ot ototototot ot ottt ottt t—t -ttt -+-+

Source Port | Dest Port |
A M St S S A ot

+
|
+
| Data Offset | CCval | CsCov | Checksum |
St A A S
|
+
|
+

Type |X| Res | Sequence Number |
S S Y St ST S S ST TS S TS S Y TS S ST TS S ST S

Reserved | Acknowledgement Number |
T T P S SO Y P A N S Y S R Y
» CsCov supports partial checksums
Errors in header result in packet drop
Errors outside Checksum Coverage ignored

0-56 bytes of payload can be covered, or all payload

* Run-length encoded history of data packets received

Cumulative ack not appropriate for an unreliable protocol
Steroidal SACK

tommm - tommm - S S S S States (SS)

|001001??| Length |SSLLLLLL|SSLLLLLL|SSLLLLLL| ... 0 received non-marked
LCEEE R LCEEE R LCEEE R LCE LR LCEEE R Fommm - 1 received ECN marked
Type=37/38 \ Vector ... 3 not yet received

Up to 16192 data packets acknowledged per option

Includes ECN nonce

» Ack Vector says whether a packet’s header was processed

Not whether packet’s data will be delivered to application

Supports drop-from-head receive buffers, ...

» Data Dropped says whether a packet’s data was delivered

And if not, why not

Enables richer [non-]congestion response functions

e Fomm———- e e e Fomm -

|00100111| Length

Fome - it s Fomm -

01234567
Fet ettt —F-+
|0] Run Length |
S ST R S

Normal Block

Drop States
0 protocol constraints
1 receive buffer

| Block | Block | Block
+ + +
\ Vector
012345617
totototototototot
or |1|Dr St|Run Len|

tototototot-t-t-+

Drop Block

10

2 corrupted
3 delivered corrupt
4 app not listening

« Protocol complexity

New draft, CCID 3-Thin, enables a low-complexity subset

* Slow start?
Now allow 4 packets/RTT (4380 payload bytes/RTT)

40ms initial packetization interval for RTT < 160ms

* Rate slows down during idle periods
Example: two-way phone

TFRC limits sending rate to twice your actual sending rate in the
last RTT

Send idle packets?

11

* Rate does not increase during app-limited period
Again, can send up to twice your app-limited rate
Don’t get to reserve bandwidth

 Variable rate considered harmful

[Meaning: Continuously variable reference rate problematic for apps
with discrete sending rates]

Apps might have discrete rates

Seems fine to allow sending at slightly above the reference rate (up
to 2x?)

New draft needed

» Rate changes considered harmful [by some apps]
Apps work at fixed rates, hard to switch
App-specific

12

* http://www.icir.org/kohler/dccp/
draft-ietf-dccp-spec-05.txt: main specification
draft-ietf-dccp-ccid{2,3}-04.txt: CCID specs
draft-ietf-dccp-ccid3-thin-00.txt: CCID 3-Thin option

* New drafts coming by the end of the month

« WGLC in December

Comments welcome!

13

