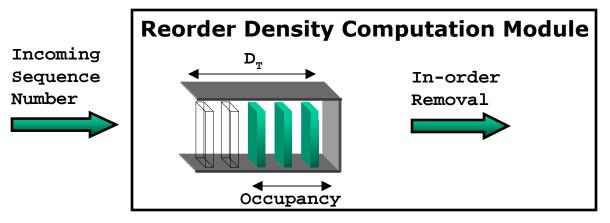
Reorder Density (RD): Metric for Degree of Reordering in Packet Sequences

http://www.ietf.org/internet-drafts/draft-jayasumana-reorder-density-00.txt

Presenter : Jerry McCollom, Agilent Technologies mccollom@labs.agilent.com

http://www.engr.colostate.edu/ece/Research/cnrl/Reorder Density.html


Anura Jayasumana, Nischal M. Piratla, Abhijit A. Bare, Tarun Banka Computer Networking Research Laboratory, Colorado State University.

Overview

- Concept
- Terminology
- Algorithm
- Examples
- Characteristics
- Updates in .01 Draft

Concept

- If a packet with a sequence number higher than the currently expected packet arrives, it is buffered.
- Packets are removed from the buffer, when they become in-order or when the buffer is full.
- Occupancy of the buffer is recorded after each arrival is processed.
- Size of the buffer (D_T) determines when a packet is considered lost or useless.

Terminology

- Buffer Occupancy : Number of packets that arrived out-of-order and are stored temporarily in a hypothetical buffer.
- Buffer Occupancy Threshold (D_T) : Maximum size of the hypothetical buffer.
- Reorder Density (RD) : Density function of the buffer occupancy.

$$RD[i] = \frac{F[i]}{\sum_{i} F[i]}$$

where F[i] is the number of arrival instances where i buffers were occupied.

- Consider an arrival instance of a packet with
 - » S : sequence number
 - » E : expected sequence number
- We consider three cases for the computation of F[i], i.e. the number of arrival instances at which i buffers were occupied.
 - » Case 1 : Duplicate packet arrival (S already received)
 - » Case 2 : Expected packet arrival (S = E)
 - » Case 3 : Out-of-sequence packet arrival (S > E)

Case 1 (Duplicate packet arrival) :

Ignore the packet.

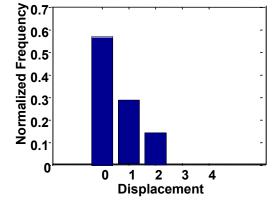
Case 2 (Expected packet arrival) :

- i. Update the expected sequence number.
- ii. Remove the arrived packet and any other (previously received) in-sequence packets from the buffer.
- iii. Update the frequency of the current buffer occupancy.

Case 3 (Out-of-sequence packet arrival) :

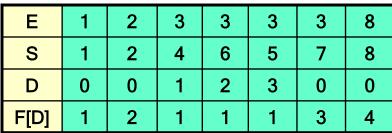
- i. If buffer is not full, store the packet in the buffer.
- ii. Otherwise,
 - a. Increase the expected sequence number treating the packet expected before increment as lost.
 - b. Remove any (previously received) insequence packets from the buffer.
 - c. Update the frequency of the current buffer occupancy.

Examples of RD Computation

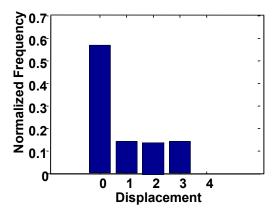

Case of no packet loss : [1,2,4,5,3,7,6].

RD Computation Steps:

Е	1	2	3	3	3	6	6
S	1	2	4	5	3	7	6
D	0	0	1	2	0	1	0
F[D]	1	2	1	1	3	2	4


RD:

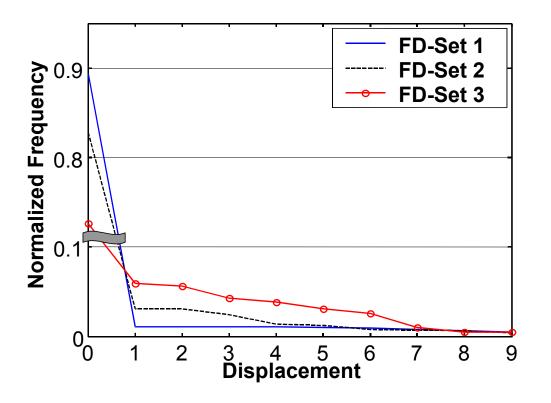
Displacement (D)	0	1	2	3
Frequency F[D]	4	2	1	0
Normalized Frequency RD[D]	4/7	2/7	1/7	0


Case of packet loss : [1,2,4,6,5,7,8] with D_T=3.

RD Computation Steps:

RD:

Displacement (D)	0	1	2	3
Frequency F[D]	4	1	1	1
Normalized Frequency RD[D]	4/7	1/7	1/7	1/7


7/15/2003

Reorder Density

Characteristics

- Shape of RD is related to the nature of reordering.
- 90th percentile, mean and standard deviation of RD can be used when a simpler metric is required.
- On-the-fly computation possible.
- Computation complexity bounded by D_T.
- A packet is considered lost if it does not arrive within D_T.
- Effect on reordering due to a packet is captured immediately on arrival, hence, allowing application to take appropriate action on-the-fly. (For example, a TCP receiver may hold on ACKs to avoid false fast-retransmits caused by reordering.)

Reorder density plots of Internet data sets

Data collected by downloading files over Internet •FD-Set 1 and 2 » Download from http://www.drdo.org •FD-Set 3

> » Download from http://www.kalkitech .com

Changes in upcoming (01) version

- Comparison of RD with other metrics with examples
- Modification to the RD algorithm
 - » Previously duplicate packets were not considered reordered, but still counted for. Now, the algorithm does not count the duplicate packets.
- Editorial/Terminology changes as suggested by RFC reviewers.

Thank You

Questions or Feedback for the Authors?