57th IETF, Juy 14th, 2003

Netlink2 as ForCES protocol (update)

draft-jhsrha-forces-netlink2-01.txt

presentation available online at http://www.zurich.ibm.com/~rha/netlink2-1.pdf

Robert Haas, IBM Research Jamal Hadi, Znyx Networks Steven Blake, Ericsson

Content

- / Summary of draft changes
- Summary of netlink2 and ForCES requirements
- / Netlink2 group addressing
- / Netlink2 association setup
- Netlink2 multipart transaction with two-phase commit

Summary of draft changes

draft-jhsrha-forces-netlink2-01.txt

- Changed *FEC* (FE Component) to *LFB* (Logical Functional Block), i.e., an FE stage.
 - Š Netlink2 provides addressing up to the level of LFBs and CECs (CE Components, or processes)
- Structuring of PIDs into *group* and *party* subfields.
- / Considerable editorial improvments

ForCES in an nutshell

- / A base protocol
 - 5 To move messages on the wire between CEs and FEs, more specifically between CECs and LFBs.
 - Š With its own addressing
- / A set of TLVs derived from
 - **Š** FE-level models and LFB-level models
 - To declare and allow manipulation of topology/capabilities/resources of the data path
 -) Include ForCES-specific LFBs, with:
 - / Set of transport protocol(s) available for CE to FE comm,
 - / Action(s) when failover, etc.

Netlink2 summary

- / Netlink2 is a base protocol between CEs and FEs
- / Netlink-derived: CE = user space, FE = kernel
 - Š Allows reuse of many existing services using Netlink (see RFC 3549)
- Changes from Netlink to Netlink2
 - Š Message header format extended
- / Room for new services
 - § Such as topology/capabilities discovery
 - § Should be addressed in separate drafts
- Provides transaction reliability, prioritization, availability, atomicity, batching.

ForCES protocol requirements

draft-ietf-forces-requirements-09.txt

- Scalability, 100s of FEs with 100s of ports each
- CE redundancy
- Multiple FEs and CEs, dynamic join/leave
- / Encryption/authentication of ForCES messages
- ForCES message priority
- Reliability (built-in: transaction-level reliability)
- Run over various interconnect technologies
- Command bundling and all-or-nothing (atomicity)

Netlink2 addressing

- Goal: have a flexible CE-FE addressing
 - **Š** Own CE/FE and CEC/LFB addressing
 - **Š** Support for multicast groups
 - § Support for transparent HA (active/backup)
 - § Mapping groups to IP unicast/multicast, or any other interconnect addressing method (Infiniband, PCI-X, etc).

Netlink2 groups

- Allows to address a single or a group of elements (CEs, CECs, FEs, LFBs)
 - § Groups can be created
 - / By PE (FE or CE)
 - / By service type
 - / Arbitrarily
- / Example of groups:
 - Š All LFBs instances of type "IPv4_Routing" in the NE
 - Š All LFBs instances in FE x.
 - Š Two FEs or CEs running in HA mode.

Netlink2 addressing examples

- Communication scenarios
 - § Show duality of groups: PE or service-oriented.
 - Š Show 4 examples
 - / Unicast
 - / Multicast
 - / Multicast with partial ACKs (avoids ACK implosion)
 - / HA (High-Availability)
 - § Mapping of PIDs to wires (= IP addresses and ports)

Netlink2 addressing: unicast example

Netlink2 addressing: mcast example

Netlink2 addressing: mcast example without ACK implosion

IP mcast address containing CE x, FE c and FE a.

IP mcast address containing FE a and FE c

Netlink2 addressing: HA example

Netlink2 communication

- / Setup of association
 - **Š** SYN and FIN messages
- Multipart transaction with two-phase commit
 - **Š** Use of NLM F MULTI and NLM F ATOMIC flags

SYN/FIN messages

Operations of FE-level and LFB-level TLVs:

- topology/capabilities exchange
- setting in active state

2-phase commit message exchange

Seq # 1
NLM_F_ACK
NLM_F_MULTI
NLM_M_ATOMIC

First command

ACK (no commit)

NLMSG_ERROR (ACK Seq # 1)

Seq # 2
NLM_F_ACK
NLM_F_MULTI
NLM_M_ATOMIC

Second command

ACK (no commit)

NLMSG_ERROR (ACK Seq # 2)

Seq # 3
NLMSG_DONE
NLM_F_ACK
NLM_M_ATOMIC

Commit

ACK (committed)

NLMSG_ERROR (ACK Seq # 3)

Conclusion

- Netlink2 fulfills ForCES base protocol requirements
 - **Š** Key features are scalability and flexibility
 - / Use of groups
- FE-level and LFB-level TLVs are to be defined in separate drafts
 - **Š** RFC 3549 on "Netlink as IP Services Protocol"
 - Š Add ForCES-specific TLV(s)

Backup

Motivation: Why Netlink derived?

- / Linux Netlink sockets proven mechanism
 - **Š** Derived from BSD routing sockets
 - Š Running code since Linux 2.1.x
 - Š Issues related to ForCES addressed over the years from operational experiences
 - / User Space (CE) to Kernel (FE) communication
- / Many existing services using Netlink
 - § IP v4 and v6 forwarding (unicast, multicast, policy routing)
 - 5 Classification, QoS, Packet redirection, IPSec, etc

Motivation: Why Netlink derived?

- / Netlink already has relevant protocol features:
 - **Š** Connectionless
 - **Š** Asynchronous oriented
 - **Š** Unicast or Multicast (one FE to many CEs)
 - Š Ability to run both in reliable and unreliable modes
 - **Š** Event handling
 - / Port events, table events, etc

Motivation: Why Netlink derived?

- Netlink Framing mostly complete for ForCES:
 - **Š** CE FE addressing
 - for local, single FE, single CE case
 - Š Extensibility (use of TLVs)
 - **Š** Many services relevant to ForCES already defined
 - / IPv4 forwarding service header covers RFC1812 completely
 - Refer to Netlink draft for examples and latest linux kernel.
 - http://www.ietf.org/internet-drafts/draft-ietf-forces-netlink-04.txt

Control

Elements

Distributed

Architecture: From Netlink to Netlink2

Netlink2: General Framing changes

Netlink Framing

Netlink2 Framing

Netlink message header

IP service template

IP service specific data (TLVs) (optional)

Netlink2 message header

Netlink2 optional TLVs

IP service template

IP service specific data (TLVs) (optional)

- / Changes:
 - / Netlink header extension
 -) Additional optional Netlink2 TLVs

Netlink Header extension

Netlink Header

- / Length Field reduced to 16 bits
- / New Extended flags
 -) NLM_F_SYN Join message
 -) *NLM_F_FIN* Departure message
 -) NLM F ETLV Extended TLVs on
 -) *NLM_F_PRIO* Message Priority
 -) NLM_F_ASTR ACK strategy

Netlink2 Header

Ver Ext (8) flgs(8)	Length(16)
Type(16)	Flags(16)
Sequence number	
Source PID	
Destination PID	

- / Version
- / PID renamed Source PID
- / New Destination PID

Optional TLVs in Netlink2 Header

/ Checksum (see RFC3358)

Type = 12

Length = 2

Value = 16 bit checksum

/ Message Priority

Type = 13

Length =2

Value = 16 bit priority

Netlink2 Addressing: Wires and Bundles

- / Use IP addressing
- / A Netlink2 wire is:
 - 5 Pair of unicast IP addresses and ports, or
 - Š An IP multicast address and UDP port.
- / A Netlink2 bundle is:
 - Š One or more Netlink2 wires
- / Use UDP/TCP/SCTP for transport
- Encapsulation for global scope (out of black box)

Netlink2 Addressing: PIDs

- An FE/CE must process an incoming message if the destination PID is:
 - 5 The unicast PID of the FE/CE, or
 - Š A logical PID to which the FE/CE belongs to, or
 - **Š** The broadcast PID

Netlink2 Addressing: how it works

- A Netlink2 message placed on a Netlink2 wire is delivered to all parties connected to this wire.
 - § Parties that have a suitable PID MUST actively process the message
 - Š Other parties MAY passively process messages for redundancy and HA (High Availability) state maintenance reasons
- Sequencing per wire, ACKs per bundle

Examples of Netlink2 wires and bundle

Bundle: IP mcast+port for CEs 1,2 and FEs 5,6

Examples of Netlink2 wires and bundle

HA scenario: logical PID for CEs 1 and 2

Examples of Netlink2 wires and bundle

Bundle:

IP unicast+port for CE 1
IP unicast+port for CE 2
IP mcast+port for FEs 5,6

Netlink2: mechanisms for creating protocols

- / Building reliability
 - § ACKs can be requested on sending msg
 - Š Netlink(2) has sequence numbers
 - **Š** Retransmit timers
- Prioritization
 - 5 If out of resources respond to higher priority messages
- ACK strategy
 - § Partial ACKs (or ACK "slotting and damping") to save resources

Netlink2: mechanisms for creating protocols

- / Building availability
 - Š As shown earlier multicasting for multiple listener synchronization
 - * NLMSG_NOOP and NLM_F_ECHO for heartbeats
- Atomicity and ordering
 - **Š** NLM F ATOMIC is essentially a lock
 - **Š** NLMSG_DONE translates to an unlock
 - Š Two phase commit:
 - / Send a message with transaction and NLM_F_ATOMIC
 - / Send a NLMSG_DONE to commit or discard

Netlink2: mechanisms for creating protocols: Batching

Netlink2 message header

Netlink2 optional TLVs

IP service1 template

IP service specific data (TLVs) (optional)

Netlink2 message header

IP service2 template

Netlink2 message header

Netlink2 message header

/ NLM_F_MULTI flag on all Netlink2
headers except for last one
/ Last Netlink2 message is of type
NLMSG_DONE
/ NLMSG_DONE could be in a different
packet if MTU boundaries exceeded

Conclusion

- / Netlink2 as ForCES protocol
 - § Based on proven and available Netlink
 - § Many existing service templates / models
 - Š Scalability & HA (High Availability) thanks to multicast
 - **Š** Flexible wires and bundles of wires
- Discovery of topology, capabilities, etc, will be addressed in revised draft