Protocol for Carrying Authentication for Network Access (PANA)

(draft-ietf-pana-pana-00.txt)

Authors: Dan Forsberg Yoshihiro Ohba Basavaraj Patil Hannes Tschofenig Alper Yegin

IETF56

Contents

- Introduction
- PAA Discovery
- Carrying EAP AVPs
- Creating a PANA SA
-

Producing the First Draft

- Design Team was established to work on initial proposal
- Work in progress:
 - Further discussions will be carried on the PANA ML
- Scope of the solution is bounded by:
 - draft-ietf-pana-usage-scenarios-04.txt
 - draft-ietf-pana-threats-eval-02.txt
 - draft-ietf-pana-requirements-04.txt
- Design team discussion archive available at:
 - http://danforsberg.info/pipermail/pana-dt
- Objective:
 - Satisfy the above requirements and scenarios by a simple protocol design
 - Various optimizations and enhancements left out for future consideration

Introduction: PANA Framework

Note: Some protocol interactions are optional.

Introduction: PANA Protocol

Interaction of PANA with the other protocols needs to be analyzed.

IETF56

What was learned from the Usage Scenarios?

- PANA can be used in
 - 1. Environments with physical layer security
 - 2. Environments with link layer security
 - 3. Environments where no lower security is available
- Scenario (3) is the most difficult one for PANA deployment and adding the most requirements
- It is difficult to support all scenarios with a single protocol. Hence some protocol steps have to be optional.
- Multiple Authentication and Key Exchange methods should be supported ⇒ EAP

Assumptions

Topology Knowledge

Device Identifier information can be installed at the correct devices

Device Identifier Installation

Security provided by DI installation is sufficient for some environments. Otherwise, DI is accompanied by cryptographic keys.

Disconnect Indication

Link layer disconnect indication cannot be assumed

Session Key Establishment

Session key needs to be available for PANA SA

Note: Some assumptions will be explained in more details in subsequent slides.

PAA Discovery (1/2)

• Why?

- To discover the PAA's address dynamically.
- How?
 - 1a) (Link local) multicast UDP packet from PaC.
 - 1b) PaC sends data packets.
 - EP sends a **PANA_discover** message to PAA, which contains PaC's unicast address.
 - PAA sends **PANA_start** to PaC.

PAA Discovery (2/2)

• Threats?

- Man-in-the-Middle between PaC and PAA.
- DoS against PAA, DoS against PaC.
- Countermeasures?
 - Difficult since message exchange between neighboring nodes.
 - hop limit check
 - Goal:
 - Prevent off-path attacks (Cookie, Sequence numbers)
 - Prevent memory allocation with single message (Cookie)

Initial Sequence Number and Cookie

- Initial Sequence Number (ISN) mechanism is used to prevent blind DoS and off-path attacks.
- Cookie mechanism is used to prevent non-blind DoS attack.
 - Cookie is sent from PAA in **PANA_start** message, but does not create any state in PAA that would enable DoS attack.
 - Cookie is implementation specific
- Message Flow

	PaC	PAA	Message(tseq,rseq)[AVPs]
1)		>	PANA_discover(0,0)
2)	<		PANA_start(x,0)[Cookie]
3)	>		PANA_start(y,x)[Cookie]
			(continued to authentication phase)
			IETF56

Carrying EAP over PANA

• Why?

- Authentication and authorization required for network access procedures
- How?
 - EAP is payload of PANA (carried in **EAP AVP**)
- Threats?
 - MITM (injecting, modifying etc.); DoS; Eavesdropping
- Countermeasures?
 - Use an appropriate EAP method depending on the security requirements
 - Difficult to prevent all attacks until PANA SA is established

Carrying EAP over PANA Transport Protocol Properties

- EAP requires ordered message delivery
 - EAP provides its own reliability and does not require the transport to be reliable
- EAP recommends EAP methods to provide message fragmentation
 - EAP TLS and PEAP support fragmentation, for example
- EAP supports retransmission for EAP Requests
 - Retransmission timeout calculation based on RFC2988 takes congestion control into account

Carrying EAP over PANA Approach chosen by PANA

- PANA does not provide fragmentation.
 - Use EAP method fragmentation for EAP messages
 - Use IP fragmentation for other messages
- PANA provides:
 - Ordered delivery of EAP messages on top of UDP
 - Protection of PANA PDU after PANA SA is established

Carrying EAP over PANA Sequence number handling(1/3)

- Why sequence number?
 - To provide ordered delivery of messages
 - Robustness against blind DoS attack is needed
- Considered approaches:
 - Single sequence number with PANA-layer retransmission
 - Dual sequence number with orderly-delivery
 - Dual sequence number with reliable-delivery
- Selected approach: **Dual sequence number with orderly-delivery**
 - Reason:
 - The 1st approach assumes 'lock step' messaging for all messages (EAP Success/Failure is not lock-step safe)
 - The 3rd approach is not simpler than the 2nd one
- Appendix in the draft provides detailed explanation

Carrying EAP over PANA Sequence number handling(2/3)

- Following sequence numbers are included in PANA header
 - Transmitted sequence number (tseq)
 - Received sequence number (rseq)
- **tseq** starts from initial sequence number and is incremented by 1 when sending a message (even it is retransmitted)
- **rseq** is copied from the **tseq** field of the last accepted message
- When a message is received, it is valid (in terms of sequence #) if
 - Its tseq > tseq of the last accepted message, AND
 - Its rseq falls in the range

[tseq of the last ack'ed msg+1,tseq of the last transmitted msg]

Carrying EAP over PANA Sequence number handling (3/3)

	PaC	PAA	Message(tseq,rseq)[AVPs]		
			(continued from discovery and initi	al handshake phase)	
	<		<pre>PANA_auth(x+1,y)[EAP{Request}]</pre>		
	>		PANA_auth(y+1,x+1)[EAP{Response}]		
	•				
	<> <		<pre>PANA_auth(x+2,y+1)[EAP{Request}]</pre>		
			PANA_auth(y+2,x+2)[EAP{Response}]		
			PANA_success(x+3,y+2)	// F-flag set	
			[EAP{Success}, Device-Id, Data-Pr	otection, MAC]	
	>		PANA_success_ack(y+3,x+3)		
			[Device-Id, MAC]	// F-flag set	

PANA SA Establishment

- Why?
 - Protect subsequently exchanged PANA messages
 - E.g.: re-auth, disconnect
 - Bootstrap L2 or L3 access control, when needed
- How?
 - Key derived from EAP method; No algorithm negotiation
- Threats?
 - MITM weak EAP methods
- Countermeasures?
 - Mutual authentication within EAP method
 - Weak EAP methods \Rightarrow see next slides

PANA SA Establishment

PANA relies on EAP methods to produce keying material for PANA SA.

PANA SA Establishment

- EAP method must provide session key for PANA SA
- There is no secure tunnel established between the PaC and the PAA (e.g. via ISAKMP or TLS) outside EAP!

EAP Method Choice

- PANA can carry any EAP authentication method
- It is the responsibility of the user and the network operator to pick the right method, depending on the environment
 - key derivation
 - mutual authentication
 - DoS resiliency
- PANA does not enable weak methods in insecure environments (a non-goal!)
 - PANA does not create a secure channel for them
 - PANA can carry EAP-tunneling methods (PEAP, EAP-TTLS)
 - Risk: MitM, needs to be fixed (not in PANA WG!)

Device ID Choice

- PaC will configure an IP address before PANA if it can
 - Network policy: EP might detect PaC's attempts and trigger PANA first
- DI is either a link-layer address, or IP address
 - IP address: when PaC can configure one prior to PANA and IPsec is used for access control.
 - Link-layer address: otherwise.

Filter Rule Installation

- PANA protocol helps identifying who should gain access
- PAA helps EP build filters based on PANA results
- When PAA and EP are separated, a protocol is needed
 - This is not "PANA protocol"
 - PANA WG will "identify" at least one such protocol
 - MIDCOM WG's output might be useful

Device Identifier Exchange

• How?

- Key derived from EAP method; No algorithm negotiation

- Why?
 - By installing this device identifier unauthorized nodes are not able to inject packets.
- Threats?
 - MITM (injecting, modifying, etc.); DoS
 - IP spoofing; DI reuse (e.g. after roaming)

• Countermeasures?

- Exchange data origin authenticated, replay and integrity protected with PANA SA
- IP Spoofing and DI => see next slides

Triggering a data protection protocol

- Why?
 - Spoofing attacks on shared links cannot be prevented by device ID based packet filters. Cryptographic protection needed.

• How?

- PAA can signal if L2 or L3 ciphering should be initiated after PANA.
- EAP established session key is indirectly used as an input to enforce link or network layer protection.
- PANA can help bootstrap link-layer/network-layer ciphering

Re-authentication (1/3)

- Why?
 - Lower-layer disconnect indication is not always available
 - Garbage collection and stop of accounting required
 - Prevent DI spoofing and resulting service theft after disconnect (e.g. due to roaming)
- How?
 - Soft-state principle
 - Two types of re-authentication supported by PANA
 - Re-authentication based on **EAP**
 - Re-authentication based on
 PANA_reauth/PANA_reauth_ack exchange
 - Both PaC and PAA can initiate re-authentication

Re-authentication (2/3)

- Threats?
 - Spoofing re-authentication messages
- Countermeasures?
 - Protection by PANA SA
 - Limit re-authentication rate in implementation

Re-authentication (3/3) Message Flow

PaC	PAA	Message(tseq,rseq)[AVPs]
-	>	PANA_reauth(q,p)[MAC]
<		PANA_reauth_ack(p+1,q)[MAC]

Example Sequence for <u>PaC-initiated</u> Quick Re-authentication

Example Sequence for <u>PAA-initiated</u> Quick Re-authentication IETF56

PANA session termination (1/2)

• Why?

- PaC \Rightarrow PAA: Stop of accounting or finish network access
- PAA \Rightarrow PaC: Many reasons (e.g. insufficient funds)
- How?
 - PANA message sent by PaC (disconnect indication)
 - PANA message sent by PAA (session revocation)
 - Revocation reason is included in Revocation-Status AVP

• Threats?

- Adversary injecting a termination message (DoS)
- Countermeasures?
 - Protection by PANA SA

PANA session termination (2/2) Message Flow

PaC	PAA	Message(tseq,rseq)[AVPs]
_	>	PANA_disconnect(q,p)[MAC]
<		PANA disconnect ack(p+1,q)[MAC]

Example Sequence for <u>Disconnect Indication</u>

PaC	PAA	Message(tseq,rseq)[AVPs]
<	-	PANA_revocation(p,q)[Revocation-Status,MAC]
>	>	PANA_revocation_ack(q+1,p)[MAC]

Example Sequence for <u>Session Revocation</u>

IETF56

Open Issues and Next Steps

Discuss some open issues

- Flexibility of Device Identifier
- Updating a device identifier
- Session Identifier
- Key derivation
- Sequencing EAP methods
- Integrity protection offered by PANA SA sufficient?
- Re-authentication lifetime negotiation
- Flow/Congestion Control

Next steps

- Improve draft
- Define message formats

Backup Slides

IETF56

Sequencing of EAP methods

• Why?

Some scenarios require more sequencing of EAP methods

- How?
 - Multiple EAPs performed in a single PANA session
 - Each EAP is delimited with **PANA_success/failure**
 - **PANA_success/failure** has **F-flag** to indicate final exchange.

Sequencing of EAP methods Message Flow

PaC PAA Message[AVPs]

(continued from discovery and initial handshake phase)

// First EAP run for NAP authentication

- <---- PANA auth[EAP{Request}]</pre>
- ----> PANA auth[EAP{Response}]
- <---- PANA success[EAP{Success},MAC] // F-flag not set</pre>
- ----> PANA success ack[Device-ID, MAC] // F-flag not set

// Second EAP run for ISP authentication

- <---- PANA_auth[EAP{Request},MAC]</pre>
- ----> PANA auth[EAP{Response},MAC]

<----> PANA_success[EAP{Success}, MAC] // F-flag <u>set</u> ----> PANA_success_ack[MAC]^{ETF56} // F-flag <u>set</u>

Session key for PANA SA is a combination of two AKA steps.