OPES Working Group

Callout Protocol Design:
Major Decision Points

IETF-56 Alex Rousskov March 2003




LLocation:

Purpose:

ApPPpS:

Features:

OPES Callout Protocol (OCP)

OPES dispatcher «— OPES callout server
Adaptation of application messages
HTTP, RTSP, SMTP, but application agnostic

Internet-friendly, fast, efficient, simple

Performance benchmark:
no-adaptation overhead of two application proxies.




Design decision points

e Current decision points (March)

e Future decision points (April)




Initiation:

ACK:

ACKs:

Granularity:

Copy:

Priority:

Current decision points

Which side can send unsolicited OPES messages?
Responses to OPES messages: required, optional, none?
Can one OPES message trigger more than one response?
What application message parts are passed or addressed?
Is application data copied or moved to the other side?

Can OPES messages be given a handling priority?

4



Future decision points

Transport binding
(TCP, SCTP, BEEP/TCP, HTTP/TCP, SOAP/?, ...)

Message encoding
(XML, MIME, simple XML, binary MIME)

Application protocol binding
(HTTP, SMTP, RTSP, ...)

Error handling
(lenient, strict, ...)

ignore these as long as we can




Initiation: Who can talk first?

e OPES dispatcher is a client (should always talk first),
callout server is a server (should never talk first)

e specific roles simplify protocol

e ICAP has clear client and server roles




Initiation: Who can talk first? (cont.)

but: callout server may need extra information (e.g., a content-
specific query for OPES rules or user preferences)

but: required keep-alive mechanism violates simple roles
but: feature negotiation may violate simple roles

but: callout server may send several “responses’
(dispatcher must be ready for “unsolicited” messages)




Initiation: Who can talk first? (cont.)

e initiate what?
e dispatcher MUST initiate OPES connections

e dispatcher MUST initiate OPES transactions
in reaction to application transactions

e other kinds of exchanges (meta-queries, keep-alives, fea-
ture negotiations) can be initiated by either side

e naturally: exchange type defines who can talk first!

8



Current decision points (check)

Initiation: Depends on message exchange
ACK: <—
ACKs:
Granularity:
Copy:

Priority:




ACK: responses required, optional, none?

e required ACKSs simplify protocol
(every request has a matching response)

e SOMe messages require responses
(e.g., to support required keep-alive mechanism)

e ACKSs tell us more about the other side state, speed

10



ACK: responses required, optional, none?

but: reliable transport — we know the other side will get the
message (eventually)

but: the other side state changes after it ACKs

but: speed == amount of work done | = messages ACKed

11



ACK: responses required, optional, none?

e avoid duplication of information (TCP has ACKSs)

e require responses only if they carry important info

e add optional ACKs for debugging?

12




Initiation

ACK:

ACKSs:

Current decision points (check)

. depends on message exchange

only when responses carry info (and for debugging?)

Granularity:

Copy:

Priority:

13




ACKs: multiple responses to a request

e Multiple responses complicate protocol

but: dispatcher should drain buffers ASAP (large chunks);
callout server should drain buffers ASAP (small chunks)

e Mmultiple data responses are unavoidable for performance
reasons

14



Current decision points (check)

Initiation: depends on message exchange
ACK: only when responses carry info (and for debugging?)
ACKs: when draining buffers
Granularity: <
Copy:

Priority:

15




Granularity: addressable data parts

e ‘entire message’ is simple but inefficient

e ‘'sequential bytes” do not let us skip

e ‘‘sequential bytes with gaps” assume serialized application
e ‘“‘arbitrary bytes” is flexible but may be inefficient

Which one is the best for OPES?

16




Granularity: addressable data parts

“entire message” is simple but inefficient

“sequential bytes” do not let us skip

“sequential bytes with gaps” assume serialized application
“arbitrary bytes’ is flexible but may be inefficient

we support the most flexible scheme?

implementations use application-specific scheme?

17




Current decision points (check)

Initiation: depends on message exchange
ACK: only when responses carry info (and for debugging?)
ACKs: when draining buffers
Granularity: support arbitrary? use appropriate
Copy: «——

Priority:

18




Copy or move data to the other side?

e “‘move’ is simpler and uses less storage on dispatcher

but: “copy” allows callout server to get out of the loop
(which is probably a common need!)

but: dispatcher may copy anyway, for non-OCP reasons
(caching or smooth recovery from OPES failure)

e Make copying an optional dispatcher-driven optimization?

e require callout servers to report copying support?

19



Current decision points (check)

Initiation: depends on message exchange
ACK: only when responses carry info (and for debugging?)
ACKs: when draining buffers
Granularity: support arbitrary? use appropriate
Copy: optional, servers must declare support

Priority: <—

20




Can OPES messages be given a handling
priority?

e priority handling is not required (only an optimization)

but: fast abort saves resources and
helps cope with DoS attacks

but: QOS is a popular selling point
but: does not complicate protocol specs by much?
e Mmake priority handling an optional optimization?

e do not require support declarations??

21



Current decision points (check)

Initiation: depends on message exchange
ACK: only when responses carry info (and for debugging?)
ACKs: when draining buffers
Granularity: support arbitrary? use appropriate
Copy: optional, servers must declare support

Priority: optional

22




OPES Working Group

Callout Protocol Predraft

IETF-56 Alex Rousskov March 2003




Why now?

OCP has too many related design options

hard to see the big picture when choosing an option

need a framework to evaluate suggestions

want to design the “best” protocol
to compare with existing ones and their NG versions

24




Why pre-draft?

e OCP has to cover many aspects
e Wwe concentrate on just a few

e convert to ID when coverage is nearly complete?

25




Key Ideas

build general message adaptation framework now;
application agnostic functional layer;
provide specific bindings and encodings when needed

pipeline — to scale with message sizes

relaxed message exchange requirements — to scale with
the number of applications and adaptation kinds

isolate dispatcher from callout servers — to scale with the
number of implementations and their needs

simple and consistent design (duh!)

26



Major OCP Objects

draft-ietf-opes-protocol-reqs-03.txt:

e callout message (unit or atom of communication)
e callout transaction (processing of a single app. message)
e callout instruction® (a message outside of xaction flow)

e callout connection (logical abstraction) to maintain
state of a group of transactions)

e callout agent (OPES dispatcher or callout server)

application specification (e.g., RFC 2616):

e application transaction (often vague)

e application message, message part, or stream!

27



Callout Message

communication atom or unit

single source (dispatcher or callout server)
single destination (callout server or dispatcher)
has name (e.g., “i-am-here")

may have attributes (e.g., “xid” or OPES transaction ID)

28




Callout Transaction

sequence of callout messages and associated state;
mostly data exchange

each side maintains associated transaction state for the
life of a transaction

initiated by OPES dispatcher
can be terminated by either side
loosely associated with application transaction

has an ID,
unique across all cc transactions from one dispatcher

may have a priority [7]

29



Callout Instruction

command or request:
“abort transaction X"
“do you make use of data copying feature?”

information or response:
“T am still alive, working on message M"
“T use data copying feature when possible”

may appear at any place in the message stream
consists of exactly one message
sent by either side (by default)

may affect the state of OPES agent, connection, or
transaction

30



Callout Connection

caries callout transactions and/or instructions

transactions may be multiplexed within a connection [7]
but may not span multiple connections [7]

instructions may appear at any time

initiated by OPES dispatcher, closed by either end,
kept open by default

each side maintains associated connection state;
used for maintaining common transaction properties [7]

may have a priority [7]

possibly unrelated to application connections, if any

31




Callout Agent
OPES dispatcher or callout server
(a connection ‘side” or “end")
maintains state common to all callout connections
may maintain expected state of agents on the other end

has an ID,
unigue across all agents it may communicate with [7]

32




Common message properties

Xid, amid, source, destinations, services

data size, data offset

sizep (application message size prediction, bytes)
modp (modification prediction, 0-100)

error (all related information may have been wrong)

33

[7]




Transaction messages from dispatcher

Xaction-start xid services ...

app-message-start xid amid src dests kind [copied] ...

app-message-end xid amid [error] reason ...

xaction-end xid [error] reason

34




Transaction messages from dispatcher

data-have xid amid offset size [copied]
data-pause xid amid
data-end xid amid [error] reason

data-ack xid amid offset size

35




Transaction messages from callout server

e app-message-start xid amid src dests sizep modp

e app-message-end xid amid [error] reason

e xaction-end xid [error] reason

36




Transaction messages from callout server

e data-need xid amid offset size

e data-have xid amid offset size sizep modp

e data-as-is xid amid offset size
e data-end xid amid [error] reason
e data-ack xid amid offset size [wont-need]

e data-pause xid amid

37




keep-alive:

abort:

negotiations:

Callout instructions

i-am-here [xid [amid]]
are-you-there [xid [amid]]

Xaction-end xid amid error reason

do-you-support feature-id question-id
i-do-support feature-id ... [question-id]
i-do-not-support feature-id [question-id]

338




Connection management messages

e connection-open dispatcher-id [priority]
e connection-priority priority
e connection-services service-ids ...

e connection-close

Also see keep-alive and feature negotiation instructions.

39




