
OPES Working Group

Callout Protocol Design:
Major Decision Points

IETF-56 Alex Rousskov March 2003



OPES Callout Protocol (OCP)

Location: OPES dispatcher ⇐⇒ OPES callout server

Purpose: Adaptation of application messages

Apps: HTTP, RTSP, SMTP, but application agnostic

Features: Internet-friendly, fast, efficient, simple

Performance benchmark:

no-adaptation overhead of two application proxies.

2



Design decision points

• Current decision points (March)

• Future decision points (April)

3



Current decision points

Initiation: Which side can send unsolicited OPES messages?

ACK: Responses to OPES messages: required, optional, none?

ACKs: Can one OPES message trigger more than one response?

Granularity: What application message parts are passed or addressed?

Copy: Is application data copied or moved to the other side?

Priority: Can OPES messages be given a handling priority?

4



Future decision points

• Transport binding
(TCP, SCTP, BEEP/TCP, HTTP/TCP, SOAP/?, ...)

• Message encoding
(XML, MIME, simple XML, binary MIME)

• Application protocol binding
(HTTP, SMTP, RTSP, ...)

• Error handling
(lenient, strict, ...)

• ignore these as long as we can

5



Initiation: Who can talk first?

• OPES dispatcher is a client (should always talk first),

callout server is a server (should never talk first)

• specific roles simplify protocol

• ICAP has clear client and server roles

6



Initiation: Who can talk first? (cont.)

but: callout server may need extra information (e.g., a content-

specific query for OPES rules or user preferences)

but: required keep-alive mechanism violates simple roles

but: feature negotiation may violate simple roles

but: callout server may send several “responses”

(dispatcher must be ready for “unsolicited” messages)

7



Initiation: Who can talk first? (cont.)

• initiate what?

• dispatcher MUST initiate OPES connections

• dispatcher MUST initiate OPES transactions
in reaction to application transactions

• other kinds of exchanges (meta-queries, keep-alives, fea-
ture negotiations) can be initiated by either side

• naturally: exchange type defines who can talk first!

8



Current decision points (check)

Initiation: Depends on message exchange

ACK: ⇐=

ACKs:

Granularity:

Copy:

Priority:

9



ACK: responses required, optional, none?

• required ACKs simplify protocol

(every request has a matching response)

• some messages require responses

(e.g., to support required keep-alive mechanism)

• ACKs tell us more about the other side state, speed

10



ACK: responses required, optional, none?

but: reliable transport – we know the other side will get the

message (eventually)

but: the other side state changes after it ACKs

but: speed == amount of work done ! = messages ACKed

11



ACK: responses required, optional, none?

• avoid duplication of information (TCP has ACKs)

• require responses only if they carry important info

• add optional ACKs for debugging?

12



Current decision points (check)

Initiation: depends on message exchange

ACK: only when responses carry info (and for debugging?)

ACKs: ⇐=

Granularity:

Copy:

Priority:

13



ACKs: multiple responses to a request

• multiple responses complicate protocol

but: dispatcher should drain buffers ASAP (large chunks);

callout server should drain buffers ASAP (small chunks)

• multiple data responses are unavoidable for performance

reasons

14



Current decision points (check)

Initiation: depends on message exchange

ACK: only when responses carry info (and for debugging?)

ACKs: when draining buffers

Granularity: ⇐=

Copy:

Priority:

15



Granularity: addressable data parts

• “entire message” is simple but inefficient

• “sequential bytes” do not let us skip

• “sequential bytes with gaps” assume serialized application

• “arbitrary bytes” is flexible but may be inefficient

Which one is the best for OPES?

16



Granularity: addressable data parts

• “entire message” is simple but inefficient

• “sequential bytes” do not let us skip

• “sequential bytes with gaps” assume serialized application

• “arbitrary bytes” is flexible but may be inefficient

• we support the most flexible scheme?

• implementations use application-specific scheme?

17



Current decision points (check)

Initiation: depends on message exchange

ACK: only when responses carry info (and for debugging?)

ACKs: when draining buffers

Granularity: support arbitrary? use appropriate

Copy: ⇐=

Priority:

18



Copy or move data to the other side?

• “move” is simpler and uses less storage on dispatcher

but: “copy” allows callout server to get out of the loop
(which is probably a common need!)

but: dispatcher may copy anyway, for non-OCP reasons
(caching or smooth recovery from OPES failure)

• make copying an optional dispatcher-driven optimization?

• require callout servers to report copying support?

19



Current decision points (check)

Initiation: depends on message exchange

ACK: only when responses carry info (and for debugging?)

ACKs: when draining buffers

Granularity: support arbitrary? use appropriate

Copy: optional, servers must declare support

Priority: ⇐=

20



Can OPES messages be given a handling
priority?

• priority handling is not required (only an optimization)

but: fast abort saves resources and
helps cope with DoS attacks

but: QoS is a popular selling point

but: does not complicate protocol specs by much?

• make priority handling an optional optimization?

• do not require support declarations??

21



Current decision points (check)

Initiation: depends on message exchange

ACK: only when responses carry info (and for debugging?)

ACKs: when draining buffers

Granularity: support arbitrary? use appropriate

Copy: optional, servers must declare support

Priority: optional

22



OPES Working Group

Callout Protocol Predraft

IETF-56 Alex Rousskov March 2003



Why now?

• OCP has too many related design options

• hard to see the big picture when choosing an option

• need a framework to evaluate suggestions

• want to design the “best” protocol

to compare with existing ones and their NG versions

24



Why pre-draft?

• OCP has to cover many aspects

• we concentrate on just a few

• convert to ID when coverage is nearly complete?

25



Key Ideas

• build general message adaptation framework now;
application agnostic functional layer;
provide specific bindings and encodings when needed

• pipeline – to scale with message sizes

• relaxed message exchange requirements – to scale with
the number of applications and adaptation kinds

• isolate dispatcher from callout servers – to scale with the
number of implementations and their needs

• simple and consistent design (duh!)

26



Major OCP Objects

draft-ietf-opes-protocol-reqs-03.txt:

• callout message (unit or atom of communication)

• callout transaction (processing of a single app. message)

• callout instruction∗ (a message outside of xaction flow)

• callout connection (logical abstraction) to maintain
state of a group of transactions)

• callout agent (OPES dispatcher or callout server)

application specification (e.g., RFC 2616):

• application transaction (often vague)

• application message, message part, or stream!

27



Callout Message

• communication atom or unit

• single source (dispatcher or callout server)

• single destination (callout server or dispatcher)

• has name (e.g., “i-am-here”)

• may have attributes (e.g., “xid” or OPES transaction ID)

28



Callout Transaction

• sequence of callout messages and associated state;
mostly data exchange

• each side maintains associated transaction state for the
life of a transaction

• initiated by OPES dispatcher

• can be terminated by either side

• loosely associated with application transaction

• has an ID,
unique across all cc transactions from one dispatcher

• may have a priority [?]

29



Callout Instruction

• command or request:
“abort transaction X”
“do you make use of data copying feature?”

• information or response:
“I am still alive, working on message M”
“I use data copying feature when possible”

• may appear at any place in the message stream

• consists of exactly one message

• sent by either side (by default)

• may affect the state of OPES agent, connection, or
transaction

30



Callout Connection

• caries callout transactions and/or instructions

• transactions may be multiplexed within a connection [?]
but may not span multiple connections [?]

• instructions may appear at any time

• initiated by OPES dispatcher, closed by either end,
kept open by default

• each side maintains associated connection state;
used for maintaining common transaction properties [?]

• may have a priority [?]

• possibly unrelated to application connections, if any

31



Callout Agent

• OPES dispatcher or callout server

(a connection “side” or “end”)

• maintains state common to all callout connections

• may maintain expected state of agents on the other end

• has an ID,

unique across all agents it may communicate with [?]

32



Common message properties

• xid, amid, source, destinations, services

• data size, data offset [?]

• sizep (application message size prediction, bytes)

• modp (modification prediction, 0-100)

• error (all related information may have been wrong)

33



Transaction messages from dispatcher

• xaction-start xid services ...

• app-message-start xid amid src dests kind [copied] ...

• app-message-end xid amid [error] reason ...

• xaction-end xid [error] reason

34



Transaction messages from dispatcher

• data-have xid amid offset size [copied]

• data-pause xid amid

• data-end xid amid [error] reason

• data-ack xid amid offset size

35



Transaction messages from callout server

• app-message-start xid amid src dests sizep modp

• app-message-end xid amid [error] reason

• xaction-end xid [error] reason

36



Transaction messages from callout server

• data-need xid amid offset size

• data-have xid amid offset size sizep modp

• data-as-is xid amid offset size

• data-end xid amid [error] reason

• data-ack xid amid offset size [wont-need]

• data-pause xid amid

37



Callout instructions

keep-alive: i-am-here [xid [amid]]

are-you-there [xid [amid]]

abort: xaction-end xid amid error reason

negotiations: do-you-support feature-id question-id

i-do-support feature-id ... [question-id]

i-do-not-support feature-id [question-id]

38



Connection management messages

• connection-open dispatcher-id [priority]

• connection-priority priority

• connection-services service-ids ...

• connection-close

Also see keep-alive and feature negotiation instructions.

39


