
RGL Codec (Version 1.0.0)
(G.711 Lossless Codec)

Michael Ramalho
mramalho@cisco.com

IETF draft:

http://www.ietf.org/internet−drafts/draft−ramalho−rgl−desc−01.txt

HTML version of draft:

http://www.winlab.rutgers.edu/~ramalho/rgl_codec_01.html

Whitepaper & code at:

www.vovida.org

RGL Codec − Use & Design Goals
Utility/Use:

� End−to−end G.711 mandatory (e.g., V.90 modem
pass−through in low−loss QoS environments).

� Applications where �instantaneous� real−time QoS
bandwidth saved via compression is available for other
elastic traffic.

Design Goals:
� G.711 Lossless Compression (both A−law and µ−law).
� Low complexity (on par with SRTP & DTMF decoders).
� If G.711 packet payload is �uncompressible�, expansion

is limited to one byte.

� Accommodate ANY G.711 payload (assumes zero−mean
acoustical input sources � but can handle any payload)

� Compression of arbitrary length G.711 samples/frame
(10 msec, 20 msec, ATM:AAL2/AAL5 sizes, etc.).

RGL Codec � Basic Idea

A �ZIP−like compression� for G.711 payloads

G.711 Lossless Codec

Compress Transmission De−compress

Lossless = Identical

RGL Codec − Methodology

= An approximate 10 msec segment

There are many 10 millisecond frames that exercise less than half the
full input range � can save at least one bit for these segments!

(It�s a brain−dead simple concept � no rocket science needed)

RGL Frame Format
Observations on RGL frames representing M samples of G.711:
� RGL frame can be from 1 to (M+1) bytes long. For all

�eight bit per sample� encodings, the (M+1) byte RGL frame has a
deterministic first byte (it is always {00011110}).

� Cannot determine number of samples in a received RGL frame (i.e.,
not sent as part of the RGL frame payload). This must be determined
via SDP (�ptime� or the default �ptime� for codec) or sent explicitly in
the corresponding RTP payload format (next draft to be discussed).

� A RGL decoder can successfully decode back to G.711 using only
the RGL frame and knowledge of the number of G.711 samples in the
frame. That is, the RGL frame is not �self describing�.

� Version 1.0.0 RGL encoder reserves seven �first byte codes�, which
are never produced via the RGL compression process (0x3E, 0x5E,
0x7E, 0x9E, 0xBE, 0xDE and 0xFE). The proposed RTP payload
format exploits the �reserved codes� in for use in RGL payload format
definition.

RGL Compression Results
Talker

Loudness
Background

Noise
Condition

Voice Activity Factor

35% 40% 45% 50%

Loud

Artificial
Zero

68.4% 64.0% 59.7% 55.4%

Near Zero 44.4% 41.9% 39.4% 36.9%

Very Low 36.3% 34.4% 32.5% 30.7%

Low 28.2% 26.9% 25.7% 24.4%

Moderate 19.4% 19.4% 18.8% 18.2%

Nominal

Artificial
Zero

72.8% 69.0% 65.3% 61.6%

Near Zero 48.8% 46.9% 45.0% 43.2%

Very Low 40.7% 39.4% 38.2% 36.9%

Low 32.5% 31.9% 31.3% 30.7%

Moderate 24.4% 24.4% 24.4% 24.4%

� RGL codec has high compression during non−speech.

� Most compression gains occur during non−speech and
are highly dependent upon background noise condition
(VAD/SS not recommended).

RGL Codec − Summary
� G.711 Lossless Compression (both A−law and µ−law).

Identical fidelity to G.711 � no coding artifacts.
� Low complexity (0.16 MIPS encode, 0.14 MIPS decode).
� If G.711 packet payload is �uncompressible�, expansion

is limited to one deterministic overhead byte ({00011110}).
� Accommodates ANY G.711 payload (assumes zero−mean

acoustical input sources � but lossless under any payload).
� Compression of arbitrary length G.711 samples/frames.
� VAD/SS not recommended, as RGL has high compression

during periods of non−speech (no silence suppression
induced artifacts).

� Attractive for applications where transport G.711 is
mandatory and �instantaneous� real−time QoS bandwidth
saved via compression can be profitably used by
applications using elastic transport protocols.

For source & documentation: www.vovida.org −> RGL

RTP Payload Format
for RGL Codec

Michael Ramalho
mramalho@cisco.com

IETF draft:

http://www.ietf.org/internet−drafts/draft−ramalho−rgl−rtpformat−
01.txt

HTML version of draft:

http://www.winlab.rutgers.edu/~ramalho/rgl_rtp_01.html

Whitepaper & code at:

www.vovida.org

RTP Payload Format for RGL Codec

Design Goals:
� Efficient format for one RGL frame per RTP payload.
� Efficient format for a common �two RGL frames� per RTP

payload case (each with the identical number of samples per
RGL frame). Common examples are two, 10 millisecond
RGL frames (G.729 case) or two 15 millisecond frames
(G.723 case).

� Efficient format for a common �three RGL frames� per RTP
payload case (each with the identical number of samples per
RGL frame). A common example is three, 10 millisecond
RGL frames (G.723 case).

� A less efficient, but generic, format that allows for a
multiplicity of RGL frames in the RTP payload (each with
an arbitrary number of samples per RGL frame).

RTP Payload Format for RGL Codec

RGL Payload Format Methodology:

�The Version 1.0.0 RGL encoder reserves seven �first byte
codes� (0x3E, 0x5E, 0x7E, 0x9E, 0xBE, 0xDE and 0xFE)
that are never produced via the RGL compression process.

�To accommodate a TOC necessary for all but the �single
RTP frame in payload� case, one of these codes will be the
first byte of the TOC.

�The �single RGL frame per RTP payload� case is inferred
by the absence of one of the �reserved codes� as the first byte
of the RTP payload.

RTP Payload Format for RGL Codec

Type One: Single RGL frame in RTP Payload

�The entire RGL frame is placed in the RTP payload.

�The first byte in the RTP payload is therefore NOT one of the
reserved seven �first byte codes� (0x3E, 0x5E, 0x7E, 0x9E, 0xBE,
0xDE and 0xFE). The RTP decoder will thereby determine the
entire payload contains only one RGL frame.

�The RGL decoder knows the number of G.711 samples contained
in the RGL frame via the SDP �ptime� parameter (or the default
�ptime� for RGL, which is 20 milliseconds).

�If one desires to transmit the number of samples in the RTP
payload explicitly, the �Type Four� encoding should be used
instead.

RTP Payload Format for RGL Codec

 Type Two: Two RGL frame in RTP Payload
(w/ identical number of samples in each RGL frame)

�The TOC for this case is a simple one, the �reserved code� 0x3E followed by
the unsigned char �RGL_Size_1�. The two RGL frames follow the TOC.

�The first RGL frame begins immediately after the RGL_Size_1 and is exactly
[RGL_Size_1+1] bytes long.

�The second RGL frame begins immediately after the first RGL frame.

�The number of G.711 samples contained in the RGL frames is determined via
the �ptime� parameter (default or otherwise).

�If one desires to transmit the number of samples in the RTP payload explicitly,
the �Type Four� encoding should be used instead.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+−+
|0 0 1 1 1 1 1 0| RGL_Size_1 | |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+ +
\ Remainder of RTP PAYLOAD: Two RGL Frames \
/ (second RGL frame begins (RGL_Size_1+1+2) bytes /
\ into the RTP payload) \
+−+

RTP Payload Format for RGL Codec

Type Three: Three RGL frame in RTP Payload
(w/ identical number of samples in each RGL frame)

�The TOC for this case is the �reserved code� 0x5E followed by RGL_Size_1
and RGL_Size_2. The two RGL frames follow the TOC.

�The first RGL frame begins immediately after the RGL_Size_2 and is exactly
[RGL_Size_1+1] bytes long.

�The second RGL frame begins immediately after the first RGL frame and is
exactly [RGL_Size_2+1] bytes long. The third RGL frame is after the second.

�The number of G.711 samples contained in the RGL frames is determined via
the �ptime� parameter (default or otherwise).

�If one desires to transmit the number of samples in the RTP payload explicitly,
the �Type Four� encoding should be used instead.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+−+
|0 1 0 1 1 1 1 0| RGL_Size_1 | RGL_Size_2 | |
+−+ +
\ \
/ Remainder of RTP PAYLOAD: Three RGL Frames /
\ \
+−+

RTP Payload Format for RGL Codec

Type Four: Arbitrary number of RGL frames in
RTP Payload, each with an arbitrary number of

samples.

�The TOC is 0xFE followed by RGL_Size_1, Num_Samps_1, Num_Frames
followed by zero or more {RGL_Size_j, Num_Samps_j} tuples dependent on
the number of RGL frames in the payload.

�The number of RGL frames in the payload is exactly Num_Frames.

�RGL frame j is exactly [RGL_Size_j+1] bytes long and has compressed
exactly [Num_Samps_j] G.711 samples.

�The first RGL frame begins immediately after the TOC and each successive
RGL frame follows afterwards.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+−+
|1 1 1 1 1 1 1 0| RGL_Size_1 | Num_Samps_1 | Num_Frames |
+−+
| RGL_Size_2 | Num_Samps_2 | RGL_Size_3 | Num_Samps_3 |
+−+
| RGL_Size_4 | Num_Samps_4 | |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+ +
\ Remainder of RTP PAYLOAD: One or more RGL Frames \
/ (second RGL frame begins, if it exists, is /
\ [RGL_Size_1+1] bytes after last TOC byte) \
+−+

RTP Payload Format for RGL Codec

Type Four: Arbitrary number of RGL frames in
RTP Payload, each with an arbitrary number of

samples.
SDP Issues:

� The number of samples contained in any RGL frame in the payload is
specified by the corresponding Num_Samps_j parameter and overrides any
�ptime� parameter specified by SDP.

� If SDP (or other media negotiation mechanism) is used, the sum of all the
Num_Samp_j parameters SHOULD be consistent with the number of samples
specified via �ptime� (assuming a given sampling rate, �ptime� essentially
specifies the number of samples in the payload).

�The number of RGL frames in the payload should be an integer number
(no fractional RGL frames).

Other Issues:

�Should I develop a �bulk/storage� mode?

RTP Payload Format
for RGL Codec

Michael Ramalho
mramalho@cisco.com

IETF draft:

http://www.ietf.org/internet−drafts/draft−ramalho−rgl−rtpformat−
01.txt

HTML version of draft:

http://www.winlab.rutgers.edu/~ramalho/rgl_rtp_01.html

Whitepaper & code at:

www.vovida.org

