Proposed (DRAFT) RTP Profile for the Speex Codec

> Jean-Marc Valin Simon Morlat Roger Hardiman Greg Herlein

> > IETF

Audio/Video Transport Working Group March 20, 2003 San Francisco, CA

About the Authors

- Jean-Marc Valin
 - Codec author
- Simon Morlat
 - Linphone author (SIP Client)
- Roger Hardiman

 OpenH323 Contributor
- Greg Herlein

- Cat Herder, Profile Editor

About Speex

Speex is based on the CELP encoding technique with support for narrowband (nominal 8kHz), wideband (nominal 16kHz) or ultrawideband (nominal 32kHz) sampling.

- Open-source implementation
- Patent and royalty-free
- Integration of wideband and narrowband in the same bitstream
- Dynamic bit-rate switching, variable bit-rate (VBR). Average bit-rate (ABR) supported by adjusting quality in VBR

More About Speex

- Voice Activity Detection (VAD) and Discontinuous Transmission (DTX)
- Support for Packet Loss Concealment
- Adjustable Complexity
- Multiple bit-rates supported
 - 2.15 kbps
 - 3.95 kbps
 - 5.95 kbps
 - 8 kbps
 - 11 kbps
 - 15 kbps
 - 18.2 kbps
 - 24.6 kbps
 - and up to 44 kbps in wideband modes

Deployment

Speex is currently in use in

- Linphone
- OpenH323 GnomeMeeting
- Asterisk

Strong interest has been expressed from game developers

Work is in progress for a fixed point implementation as well as several DSP implementations

Codec Basics (Narrowband) (values for an 8 kbps nominal bit-rate)

- 20 ms Frame Length
- 10 ms lookahead required
- ~10 mflops nominal encoding complexity
- ~1 mflops decoding complexity

Codec Basics (Wideband) (values for a 20.6 kbps nominal bit-rate)

- 20 ms Frame Length
- 14 ms lookahead required
- ~19 mflops nominal encoding complexity
- ~2 mflops decoding complexity

Codec Basics (Ultrawideband) (values for an 22.4 kbps nominal bit-rate)

- 20 ms Frame Length
- 16 ms lookahead required
- ~25 mflops nominal encoding complexity
- ~4 mflops nominal decoding complexity

Bit-stream Characteristics

- Supports mixed-mode operation (wideband and narrowband in the same bitstream)
- Supports dynamic bit-rate switching (either for VBR or via request) at any 20ms frame boundary
- Mode is included in each frame, so packet loss during a mode switch does not affect performance
- Decoder is downward compatible (less capable decoder can recover what bands it supports with no degradation in that band – it discards the band data that is incapable of handling)

Speex's In-band Signaling

(transparent using libspeex - currently treated as suggestions only - still subject to change if the IETF has good ideas)

- Decoder Perceptual Enhancement Request
- Encoder Mode Switch Request
- Encoder Mode Switch Request Low Band
- Encoder Mode Switch Request High Band
- Encoder Quality Switch Request for VBR
- Request Acknowledge
- Encoder VBR/VAD/DTX Enable Request
- Transmit 8-bit Character
- Intensity Stereo Information
- Announce Maximum Acceptable Bit-Rate
- Packet N Receive Acknowledge
- Conservative Encoding Request
- User Defined

RTP Profile Requirements

To use Speex in RTP, a profile must provide the following:

- Mechanism for Dynamic Payload Type Mapping
- Mechanism to indicate when more than the default one codec frame per packet is sent
- Mechanism to indicate the sample rate of the encoded bitstream for accurate playback
- Mechanism to indicate the decoders desired bandwidth, CBR or VBR, and Comfort Noise Generation.

• Mechanism for Dynamic Payload Type Mapping

SDP example: m=audio 8088 RTP/AVP 97 a=rtpmap:97 speex/8000

H.323 Example:

Non-standard codec block definition in the H.245 codec capability negotiations:

t35CountryCode = Hex: B5 t35Extension = Hex: 00 manufacturerCode = Hex: 0026 Length of the Binary Sequence (8 bit) Binary Sequence consisting of an ASCII string, no NULL terminator

• Mechanism to indicate when more than the default one codec frame per packet is sent

RECOMMENDED practice is to use only one frame per packet.

ptime parameter set to increments of 20ms to indicate the number of Speex frames per packet.

SDP Example:

m=audio 8008 RTP/AVP 97 a=rtpmap:97 speex/8000 a=ptime:40

H.323 Example:

Append the string "ptime:40" to the binary sequence

• Mechanism to indicate the sample rate of the encoded bitstream for accurate playback

Typically defined in the *rtpmap* parameter, but may also be specified using the *sr* parameter

SDP Example:

m=audio 8088 RTP/AVP 97 a=rtmap:97 speex/8000

H.323 Example:

append the string "sr:8000" to the binary sequence

• Mechanism to indicate the decoders desired bandwidth, CBR or VBR, and Comfort Noise Generation.

Encoding Bandwidth ebw: narrow|wide|ultra

Variable Bit Rate vbr: on|off

Comfort Noise Generation cng: on|off

Mode mode: <numeral>

Perceptual Enhancement penh: on|off

Known Issues

- MIME Type Registration Required
- *ptime* statement should read that default is 20 (one frame), not one.
- Does the initial profile need to cover stereo?
- Current libspeex Library is stable at 1.0rc3 and is ready for full 1.0 release, pending IETF comments to the contrary
- Others?

Conclusion

Because Speex is patent and license Free, has good performance, and is available as an Open Source library under a liberal BSDstyle license, we believe that Speex will radically lower the barrier for entry for speech compression in next-generation network applications.

The next step is to standardize how Speex frames are encoded onto the wire.

This Draft Profile is a beginning of that step, and we thank you for considering it.