An ISP Reality Check

Credits

- Thanks to DC Routing Geeks and other operators for review and correction of early versions of this presentation.
- Reviewers in alphabetical order:
 - Jun-Ichiro Hagino, Joel Halpern, Geoff Huston, Rob Jaeger, Tony Li, Dave Meyer, Mike O'Dell, Dave O'Leary, Andrew Partan, Rob Rockell, Ted Seely, Mike StJohns, Bill Woodcock
- Any presentation bugs are Ran's fault.

Limitations

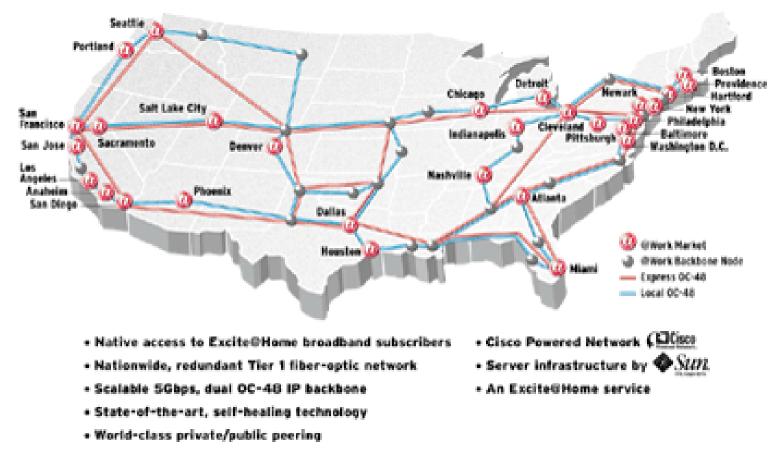
- This presentation describes common and typical ISP properties.
- It is a little US-centric, due to author and reviewer bias.
- This does NOT describe a specific ISP.
- All ISPs vary somewhat from this.
- ISP properties vary over time.
 - In particular, bandwidth keeps getting cheaper

Outline

- Prime Directive
- Typical Backbones
 - Design, Engineering, Topology, etc.
- Capacity Engineering
- Accounting
- Access Links
- Router Design
- Congestion Avoidance

- Lessons from 9/11/01
- And much more

Prime Directive


- Drop no packets inside the network, even in the worse case situations
 - Worst case includes: fibre cuts, router problems, etc.
 Also includes disasters, terrorism, & nuclear war
 - One large multinational ISP reports less than 0.005% packet loss worst case (experimentally measured)
 - Same ISP reports no adverse customer impact despite typically having 2 major fibre cuts/month

ISP Backbone Characteristics

Typical Backbone Technology

- PPP over SONET (POS) by far most common
 - Nx OC-12 uncommon outside Asia/Pacific
 - Nx OC-48 common today
 - Nx OC-192 increasingly common, esp in Europe/NA
- ATM over AAL5 (ATM) increasingly rare
 - Nx OC-12 and Nx OC-48 exist in some places
 - OC-192 ATM not available in routers (now or soon)
- Wave Division Multiplexing (WDM)
 - Typically has a SONET/SDH physical interface
 - Permits 40+ Gbps over a single fibre pair

Former @Home Backbone

IETF IEprep WG, Atlanta, Nov 2002

Capacity Engineering

- Most backbones are over-engineered
 - Because it is lower cost to build them that way
 - Cost of bandwidth keeps dropping with time
 - Avoids packet loss when fibre cuts happen
- Max link utilisation typically 35% of link capacity
 - Permits no packet loss even if multiple fibre cuts
- Upgrade capacity when link has utilisation of 40-60%
- Use high-availability routers
- Deploy routers in a redundant manner 11/18/02 IETF IEprep WG, Atlanta, Nov 2002

Exchanging Traffic

- Governed by peering contracts between ISPs
- If pair-wise traffic exceeds 40-100 Mbps, then dedicated link is normally used

– Either MAN fibre or private fibre at an IX

• Otherwise, traffic usually exchanged over a non-blocking switch fabric at an IX

– Non-blocking is universally required by IXs

Packet Accounting

- ISPs usually only offer IP-layer service
- ISPs track basic counters of Interface MIB:
 - Bytes in/out on an interface
 - Packets in/out on an interface
- ISPs do NOT continuously track:
 - Traffic mix on each interface by IP ToS, application, or other upper-layer attributes
- IP-layer deals with packets, not flows or calls

Issues with QoS Mechanisms

Quality of Service

- Enabling QoS in a lossless network means the QoS packets are often treated worse
 - Admittedly a counter-intuitive experimental result
 - Particularly true on CPU-based routers
 - Also seen in some ATM switches, by the way
- So far, unable to find any commercial ISP whose eng/ops staff will confirm actual large-scale deployment of IP-layer QoS
 - So far, press releases != reality

How QoS Increases Costs

- Operations costs:
 - Need to debug "does a packet with <foo> QoS get there" not just "does any packet get there"
 - Need to correctly handle more complex configs
- Harder to troubleshoot whether a routing problem, QoS problem, or both -- hence lengthens MTTR
- Deploying QoS often implies upgrading the deployed hardware
- The more deployed features, the more potential for something to break, hence shortens MTBF and increases operations costs

Risks of IP-layer QoS

- Source: IEPG meeting, 17 Nov 2002
- Deploying QoS (example: DiffServ) creates a new vulnerability to DoS and DDoS attacks on ISPs -- can reduce service quality
- Large number of edge sites emit priority traffic towards same victim
- Computationally infeasible to authenticate all IP packets with (ToS != 0) inside routers

ISP Services

Most ISPs Offer Only 1 Service:

• Best-effort IPv4 forwarding

Access Links

- Commercial Examples
 - DSL,
 - T1, NxT1, T3
 - OC-3 POS/ATM
- Residential Examples
 - Dialup or ISDN
 - DSL
 - Cable Modem

- Primary source of network congestion
 - Customer controls capacity of access link
 - Customer often controls their router
 - ISP can't affect much by itself

Winding Down

VoIP & Traffic Mix

• VoIP is less than 1% of bytes/packets in a large carmarker's international corporate IP network.

– Information current as of 11/13/02

- VoIP is a very small percentage of packets/bytes in any commercial ISP
- Growth of other traffic types dwarfs growth in commercial ISPs and corporate networks today

A Conundrum

- When the network delivers all the packets, it is impossible to provide "preferred" or "lower drop preference" service.
- So, much better to ask that one's packets get delivered than ask that one's packets get special treatment.

Lessons from 9/11/01

- The Internet did NOT have problems
 - Negligible packet loss/congestion in the net
 - Unicast & multicast each worked fine
 - Demonstrated we are ALREADY prepared
- Some content providers had transient problems inside their LANs or servers
 - Generally fixed by moving to no-image content
- Dynamic routing worked VERY well
 - We did have fibre cuts, but routed around them
 - Fast convergence times in modern routing protocols

Conclusions

- The Internet has demonstrated that it is already prepared for emergencies
 - 9/11/01, many earthquakes/disasters, other history
- Congestion avoidance mechanisms work well
- ISPs design their networks to avoid packet loss
- Congestion is largely an access link phenomenon created by customer choices
- Deploying QoS can reduce IP service quality.

Impact of Router Design on IP congestion

Main Points

- Packets do not get lost inside properly designed modern backbone routers
 - Routers have enough buffer for TCP congestion avoidance to kick in and reduce the offered load
- Packets do get lost when the next-hop link lacks bandwidth
 - This happens on access links
 - This does not happen on backbone links; many backbones can even survive fibre cuts without problem
- ISPs make pessimistic deployment assumptions, so they deploy routers in a redundant fashion 11/18/02

Backbone & Router Design

- Routers are designed to avoid packet loss by facilitating TCP congestion avoidance
- Packet memory on an interface is normally: ((Interface speed in bits/second) * (trans-Oceanic round-trip-time in seconds))
- Deployed routers have non-blocking switch fabric
- Low-cost WAN fibre --> over-provisioning common

LAN/MAN & Router Design

- Conceptually similar to backbone routers
- Typical RTT is very very small
 - So less packet memory/interface is needed
 - Ergo, packet memory typically smaller
- Non-blocking switch fabric still common
 Not all switches provide this; most can
- Availability of cheap 1/10 Gig Ethernet means over-provisioning very common

Router Forwarding Path

- CPU-based software forwarding for years
- ASIC-based hardware forwarding is now fairly common, but not yet universal
- Properly designed router using ASIC forwarding is generally more robust
- Access routers often still CPU-based:
 - Increased risk of packet loss/congestion
 - More features means lower forwarding rate

Router Reliability

- Much shorter MTBF than a Class 5 switch
 - Causes ISP to build in router redundancy and lots of fibre path diversity
 - Dynamic routing important to failure recovery
- Improving a lot over time
 - Redundant power common
 - Redundant CPU/switch fabrics common
 - Redundant PHY not unusual
 - More modular software increases robustness

Congestion Avoidance & Control

- Paper by Van Jacobson, ACM SigComm 1988
 Defines TCP congestion avoidance algorithms
- TCP-like protocols interpret packet loss as congestion ==> reduce sending rate
 - Sliding window also limits quantity of unACK'd data
- If congestion appears, it generally goes away within about 1 RTT
 - 1 RTT is generally less than trans-CONUS
- IETF also working on ECN

Service Level Agreements

- Most do not cover the access links
 - ISP can't control that link, so won't make promises
- Most do not cover inter-provider traffic
 - Single ISP can't control whole path, so won't make promises
- Most written by lawyers & accountants
- SLA violation gives user free service for some time in future or maybe a rebate
- SLA Engineering by over-provisioning, not QoS

ISP Pricing Models Today

- Several pricing models exist today:
 - Flat-rate, but tiered on access link capacity
 - By far this is most common
 - Flat-rate plus usage based on Nth percentile of traffic on the link during previous month
 - Becoming more common; very common for backup
- Other pricing models exist now & in future
- IETF doesn't get involved in pricing models

Pricing by Access Link Capacity

- ISP costs are generally fixed, not variable
- Fibre or leased capacity costs generally fixed
 - Leased circuit costs vary by link speed
 - Higher speed links lower cost/bit/second
 - Most large ISPs have dark fibre
- Corporate customers prefer flat rate pricing because more predictable/budgetable