
EOS OOPS
Object Oriented PDUs for SNMP

Wes Hardaker
<hardaker@tislabs.com>

draft-hardaker-eos-oops-02pre.txt

2002.Nov.20

 Status

 EOS Moving forward -> rewriting:
 ASN.1
 formal text

 Operations supported in -02pre:
 Get-Object-PDU -> Get-Object-Response-PDU
 Write-Object-PDU -> Write-Object-Response-PDU

 Feedback needed on Write support

 Changes from Yokohama:

 SMIv3 almost supported
 last minute changes, ...

 cursor field added to GO(R)Ps

 ASN.1 started.

 search-criteria now supports AND/OR/NOT

 errors are now SEQUENCE OFs such that:
 multiple errors can be returned for a given request
 no errors is only a 2 byte empty SEQUENCE OF tag

 To do:

 Finish SMIv3 support?

 Fix outstanding issues

 Finish writing the textual descriptions

 Notification support?

 Integration with SNMPv3 architecture

 Help needed from:

 SNMPv3 architecture experts

 ASN.1 experts

 XML experts

 Implementors!

 Why you should look at write support:

 Better grouping transaction models:
 doAll, tryAll, doAtLeastOne, tryAtLeastOne

 Support for operations:
 Create, Modify, Delete

 Modification via search-parameters
 Modify all rows where ...

 Ordered vs Unorderd opertations.
 "execute in any order" vs
 "execute in this order"

 Questions for the WG:

 Support SMIv3?

 SMIv3 lacks editors and may be shut down

 Which should be the priority v2 or v3?

 Support complex depth operations?

 Imposes some complexity
 (can be minimized, of course)

 Questions for the WG:

 Define notifications too? (NOP/NORP)

 Questions for the WG:

 Return search-criteria field?

 Is there *any* manager that doesn’t save state for requests???

 Might be useful for sniffing

 Search criteria issues

 Desire indicated for complex expressions:

 GOP Table where columnX > columnY + columnZ

 Counter value searching.

 GOP ifTable where diff(ifOutOctets) > 10000?

 Implementation notes:
 where := { DIFF, OLDVALUE, 10000 }

 Augmentation Retrieving

 Augmentation table implementations must be either:
 Implemented in conjunction with the indexing data
 99% of the time?

 Implemented differently
 1% of the time?

 Augmentation Retrieving

 Issue is that:
 Joins are hard at the agent, if they have to.
 If data is already aligned, then the responses will already be aligned

anyway.

 Augmentation Retrieving

 Specifically, 1 operation ok?:

 GOP ifTable and ifXTable

 Or two (but same PDU):

 GOP ifTable
 GOP ifXTable

 Augmentation Searching

 Which of the following should be possible:
 (note, this pretty much requires a join)

 GOP ifTable.ifSpeed
 where ifXTable.ifName = something

 GOP ifXTable.ifHCOutoctets
 where ifTable.ifType = 6

