A Protocol for Anycast Address Resolving <draft-ata-ipv6-anycast-resolving-00.txt>

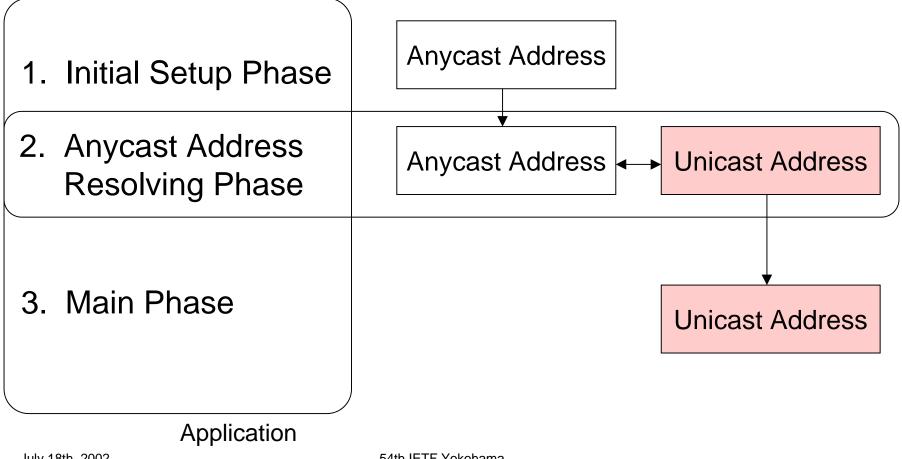
Shingo Ata, Osaka City University ata@info.eng.osaka-cu.ac.jp Hiroshi Kitamura, NEC Corporation kitamura@da.jp.nec.com Masayuki Murata, Osaka University murata@cmc.osaka-u.ac.jp

racaeciie.obana a.ac.jp

54th IETF Yokohama

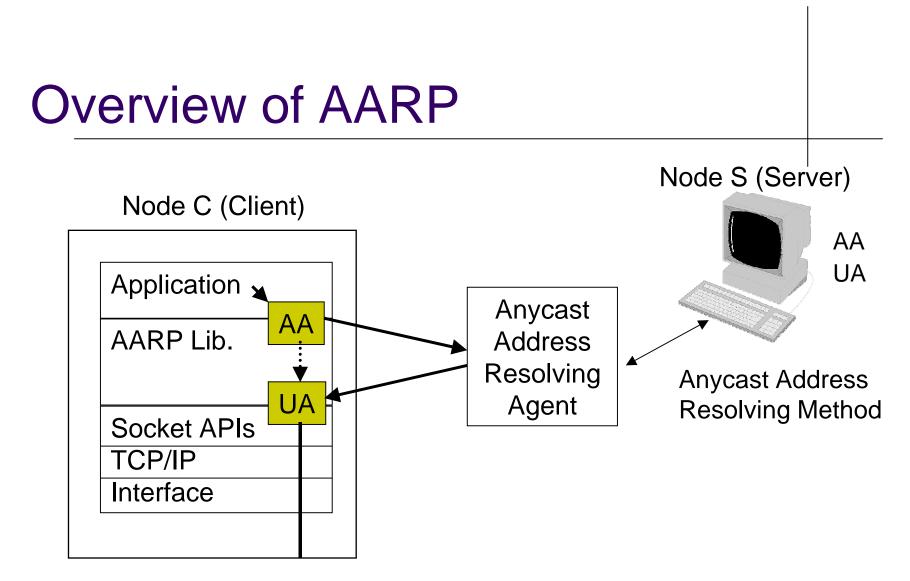
Problems in Anycast

- Cannot use anycast for stateful (e.g., TCP connection) sessions
 - Destination node may change during the session
 - Anycast address cannot use as the source address
 - Anycast addresses are not syntactically distriguishable from unicast addresses


Goals

- To utilize anycast in stateful communications
 - w/o (or w/ minimum) application modification
 - w/o (or w/ minimum) protocol extension
 - in applications not designed for anycast
- For example,
 - TCP applications (http, ftp, telnet, etc...)
 - UDP application (DNS query)

Anycast Address Resolving


- Resolve an anycast address into the corresponding unicast address
- Anycast address is used
 - only to determine the appropriate node out of anycast membership nodes
- After starting communication,
 - all packets are sent by the unicast address
- Anycast Address Resolving Protocol (AARP)

Add a new procedure for AARP

July 18th, 2002

54th IETF Yokohama

AA : Anycast Address

UA : Unicast Address

July 18th, 2002

54th IETF Yokohama

Address Resolving Method

- AARP adopts **packet probing** technique
 - w/o modification at the server
 - C first sends a probe packet included AA in its destination.
 - The probe packet is routed and sent to S.
 - S then returns a packet to C. The source address of the returned packet is set to UA.
 - C waits the return packet and gets UA from the source address of the received packet.

Implementation Issues

- For address resolving
 - ICMPv6 Echo Request/Reply
- For AARP Library
 - Same approach in SOCKS5 (RFC1928)
- Current implementation
 - has been verified in TCP (telnet, ftp, http) applications, and UDP (DNS query) application

Applicability Statements

- Software deployment on the client node
- Protocol overhead
 - Needs packets for anycast address resolving
 - Anycast and unicast addresses are not distinguishable
 - The node should check all addresses (anycast, unicast)
- Caching resolved addresses
 - Reduce the traffic for probing packets
 - Policy of caching depends on type of applications

Security Considerations

- Remote Redirect. problem
 - Receiving spoofed packet to another node
 - The anycast client may become an unexpected attacker of denial of service
- Blackhole. problem
- Same issues in DNS resolving, Neighbor Discovery, etc, should be considered

Next Steps ?

- Revise the document
 - improve the security consideration section
 - append caching issues
- Comments ? or questions ?

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.