draft-wenger-avt-rtp-jvt-00.txt

RTP Payload for JVT Video

Stephan Wenger stewe@cs.tu-berlin.de

Overview

- What is JVT Video
- VCL and NAL
- The ERPS Concept
- Open Issues
 - Semantic of the RTP Timestamp
 - Semantic of the Marker Bit
 - (Compound Packets vs. RTP Multiplexing)

What is JVT Video

- New video coding from
 - ITU-T VCEG (the guys who did H.263)
 - MPEG-Video sub-group
- Status of the work
 - Technically frozen spec hopefully in May
 - Input from AVT still possible
 - Standard by late 2002/early 2003
 - Products shortly thereafter

What is JVT Video? VCL

- VCL = Video Coding Layer
 - "Normal" Video Codec
 - 4x4 blocks, many macroblock shapes, affine motion, ..., PLUS
 - Enhanced Reference Picture Selection (ERPS)
 - Data Partitioning
 - Output of the VCL is a Slice
 - Consists of one or three Partitions
 - Slices are independently decodable

What is JVT Video? NAL

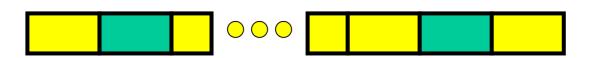
- NAL = Network Adaptation Layer
 - Maps Slices to network/mux specifics
 - Generates/consumes NALPs
 - Network Adaptation Layer Packets
 - Bit-oriented networks: start codes / framing
 - Packet networks: packetization scheme
 - See I-D for NALP types

The ERPS Concept

- Three-dimensional Motion Vectors
 - Coding Efficiency, Error Resilience, special
 - Bit stream addresses Reference Buffer
 - Reference Pictures are "stored" in a Reference Buffer
 - Normally FIFO
 - Explicit Addressing possible

The ERPS Concept

 Explicit Addressing (write to Reference Picture)



- Packet Stream sets up green RefPic
- Unclear, when this will be used (if ever)

Reference Pics

FiFo T

Fifo T+1

FiFo T+1

- Yellow: Live Football Game
- Green: Slices of Commercial
 - Included in the packet stream whenever bit rate is available
 - To be display some (unknown) time in the future, by simply referencing it
 - Inter Picture w/ (0,0) MV, no coefficients

Data Partitioning

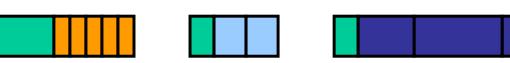
Header Data (MBTYPE, MVs, ...)

most important

Intra CBPs and Coefficients

less important

Inter CBPs and Coefficients


least important

Slice/Partition Header

SSP NALP

DPA/DPB/DPC

Open Issues

- Semantic of the RTP Timestamp
- Semantic of the Marker Bit
- (Compound Packets)

RTP Timestamp 1/3

- Can't use Sampling Instant
 - Unknown for the Commercial
- Can't use Presentation Time
 - Unknown for the commercial
 - Jitter Buffer problematic (avt@ietf.org)
- Decoding Timestamp
 - Decode a Slice? A Picture? Tricky!

RTP Timestamp 2/3

- Proposal: Sending Time of RTP packet
- Pro: Perfect Jitter Buffer handling
- Contra: Media synchronization not possible
 - BUT: does this term make sense for JVT anyway?
 - Yes, for the yellow packets, no for the green packets

RTP Timestamp 3/3

FiFo T

Fifo T+1

FiFo T+1

- How do you want to "synchronize" the green packets with anything?
- Conceptually, JVT Video could consist ONLY of green packets

Marker Bit

- Traditional: M bit set for last slice of a picture
- JVT: No true picture concept!
 - Could keep it as is
 - Could change it to last partition of a slice

(Compound Packet 1/2)

- Build-in multiplex tool
 - Not only for RTP, but
 - We could (if we really want) disallow its use over RTP
- Low overhead (2 bytes per NALP)
- Intended for
 - MTU size change (wireless/wireline gateway)
 - Combining different NALPs that "belong" together

(Compound Packet Examples)

- Combine DPAs of a picture together to save IP/UDP/RTP header bits
 - And to protect them
- Combine 10 wireless SSPs (100 bytes each) to one 1 Kbyte RTP payload
- Combine the intra coefficients of 10 pictures together in one packet and protect them