Group Domain of Interpretation (GDOI)

<draft-ietf-msec-gdoi-02.txt>

Mark Baugher (Cisco)
Thomas Hardjono (Verisign)
Hugh Harney (SPARTA)
Brian Weis (Cisco)

Group DOI

Changes from draft -01
Implementation Status
Future Plans

- Section 2.4.2
 - Text is added stating that the GDOI prototol SHOULD NOT use port 500.
 - Is that strong enough?

- Section 3.2
 - Resurrected the optional KE payloads.
 They may be used to further protect the keys sent in the KD payload.
 - Re-defined the SEQ payload to be optional in the registration message, and added text saying it is only required when the group policy includes policy rekey message policy.

- Sections 3.3 & 3.4
 - Added text clarifying the initiator and responder operations for the registration message.
 - Helps in understanding the system flow.

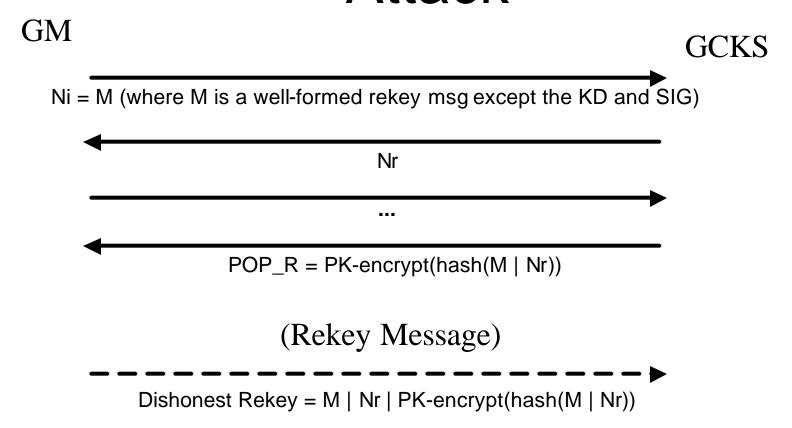
- Section 5.1
 - Included the ID payload by copy rather than by reference.
- Sections 5.3 & 5.4
 - Define IPSEC and ISAKMP assigned numbers by referencing the IANA registries rather than the RFCs

- Section 5.4.1
 - Tweaked the fields of the ESP TEK payload based on implementation experience.
 - Corrected a cut-n-paste error and added some explanatory text

- Section 8.0
 - Added an IANA Considerations section.
 - New DOI number needed
 - New payloads need assigned numbers
 - New GDOI registry needs to be formed

- Remedied attacks on the rekey message discovered by Catherine Meadows
 - Man-in-the-middle
 - Assumes IKE Phase 1 keys protecting the GDOI exchange can be broken in real time.
 - Dishonest group member

Use of nonces in GDOI


(Registration Message)

Output

POP_R = PK-encrypt(hash(Ni | Nr))

- Liveliness indication
- Proof of Possession encrypted content

Dishonest Group Member Attack

This only happens if ...

- Ni is the size of the rekey message
- GCKS uses same keypair for
 - encrypting the POP payload, and
 - signing a rekey message
- The POP hash algorithm is the same as the SIG hash algorithm

It was mitigated by ...

- Recommending that the GCKS:
 - SHOULD NOT use the same key for encrypting the POP as signing the rekey.
- Bounding the nonce to be between 8 and 128 bytes.
 - A rekey message is calculated to be larger than 128 bytes

Group DOI

Changes from draft -01
Implementation Status
Future Plans

Implementation Status: Interoperability

- Two implementations:
 - Nortel implementation based on FreeSWAN (Linux)
 - Cisco implementation based on isakmpd (Linux and OpenBSD)
- Successful interop of registration protocol this week!

Implementation Status: Creation of IPSec SAs

Using the isakmpd implementation:

- The client received multicast SAs from an isakmpd-based GDOI key server and loaded them into the OpenBSD kernel.
- IPSec SAs were created (OpenBSD)
- Multicast packets matching the SAs were encrypted by one host and decrypted by another.

Implementation Status: Creation of SRTP SAs

Again using the isakmpd implementation:

- The client received multicast SAs from an isakmpd-based GDOI key server on behalf of an SRTP application.
- The application created SRTP SAs (Linux and OpenBSD)
- Multicast packets matching the SAs were correctly processed by the SRTP code.

Group DOI

Changes from draft -01
Implementation Status
Future Plans

Working Group Last Call

We think we're ready:

- This is the 5th version of the draft.
- Catherine Meadows performed a formal security analysis and all issues have been resolved to her satisfaction.
- We have two implementations which interoperate
- Testing has shown that GDOI can accurately create both IPSec and SRTP SAs.

Next work items

- Clarify the text with MUST, SHOULD, MAY keywords per RFC 2119.
- Re-format for easier conversion from Word to text.
- Check the document against the AD nits list, etc.

Reference implementation

 The isakmpd based implementation will be released as a reference implementation early next year.

BACKUP SLIDES

Message 1: Request

```
Initiator (Member) Responder (GCKS)
-----
HDR*, HASH(1), Ni, ID -->

* Protected by IKE Phase 1 SA Hashes, encryption occurs after HDR
```

```
HASH(1) = prf(SKEYID_a, M-ID | Ni | ID)
```

- HASH provides message authentication
- NONCE is used for replay protection
- ID indicates the desired group to join

Message 2: Policy Push

• SA contains specific policy for the Category-2 and Category-3 SAs. E.g., which crypto algorithms to use.

Message 3: Ack

- KE_I obtains perfect forward secrecy (if desired)
- CERT send a public key used for authorization (if needed for POP_I)
- POP_I provides evidence that the client has possession of a private or secret key

Message 4: Key Download

- SEQ provides the sequence number which will be used for the next rekey message.
- KD provides the keys for the policy delivered in the SA payload

Registration Protocol

Rekey Message

- The "cookie pair" in the ISAKMP HDR acts as a SPI which identifies the group.
- SEQ contains a counter used for replay protection
- SIG contains a digital signature of the packet for authentication