iSCSI – a SCSI over TCP mapping

London-August-2001

Julian Satran

IBM Research Lab in Haifa

Status

- ◆ Open "chapters"
 - **◆** Security
 - ◆ 2 "teams" working
 - ◆ SRP+keying requires inventing a scheme
 - ◆ IKE+requires referencing a scheme
 - Encryption will probably have to be mandatory to implement
 - ◆ A separate RFC to be referenced by the main iSCSI doc
 - **◆** Framing
- ◆ Open items
 - ◆ NOP
 - ♦ Login
 - ◆ T10 ordering proposal
 - ◆ Recovery summary

NOP (1)

- ◆ Issue NOP may close the command window
- ◆ Solution proposed simplify NOP
 - ◆ Remove the P bit
 - ◆ Ping Data if present indicate by DataSegment Length
 - ◆ Convey the answer need through ITT/TTT
 - ◆ No valid ITT/TTT no answer needed
 - ◆ Mandate Immediate if ITT is not valid

- ◆ ITT valid means Initiator wants answer
- ◆ TTT valid means Target wants answer
- ◆ ITT & TTT cannot be both valid in a Nop-In (to break the loop)
- ◆ ITT & TTT can be both valid on a Nop-Out (three way handshake)

- **♦** Issues
 - ◆ General Structure
 - **◆** Individual Parameters
- ◆ General Structure in 07
 - ◆ 2 phases
 - ◆ Implicit
 - ◆ Optional
 - ◆ Overall concern reduce number of handshakes and keep footprint low
 - ◆ Perceived programming complexity not a concern

- ◆ Proposals
 - ◆ SecurityContextComplete alone Eddy Quicksall
 - ◆ Mandatory Security Robert Russell
 - ◆ Both Explicit & Optional
 - ◆ Through brackets
 SecurityPhase/OperationalPhase=<start|end>
 - ◆ Through a binary this-phase/next-phase code and reuse of the final bit

Lo

Login (3)

- ◆ SecurityPhase/OpPhase =<start|end> are the "brackets"
- ◆ Parameters for one phase only
- ◆ Legal
 - ◆ I->T Login SecurityPhase=start,.... Parameters, SecurityPhaseEnd+F
 - T->Login SecurityPhase=start,....Parameters
 - ..., SecurityPhaseEnd+F

- ◆ Some details about the binary-phase and final/bit proposal
 - ◆ Byte 38 in Login & Text has 2 Nibbles Current/Next
 - ◆ Final bit means ready to move to next
 - ◆ Phases are 0-Security, 1-Op, 15-FF
 - ◆ Parameters are from one phase only
 - ◆ After the F bit Handshake they move on

- ◆ Miscellaneous
 - ◆ Common Header/Data CRC Negotiation (either both are on or both are off)
 - ◆ Drop Security Digest Negotiations
 - ◆ Vendors can use them as vendor specific
 - ◆ Drop Security Digests altogether
 - ◆ Nobody can use them
 - ◆ Hex/Decimal Leave only hex?

T10 – serialization interlock

- ◆ Current proposal Busy, Task Set Full and Reservation Conflicts become Check Condition generators under the control of bit in the LU Control Mode Page
- ◆ Issue in single queue (per multiple initiators) devices this can cause a Denial Of Service situation
- **♦** Solutions:
 - ◆ Leave as it is argue the case in T10
 - ◆ Use UA that with a recently proposed/adopted change can have the same serialization effect but limited to one initiator even on single queue devices
- ◆ Jim Hafner and Julian Satran will participate at the next T10 meeting attempting a closure on this issue

Interlock – Proposal Outline

- ◆ Add an Interlock Bit in the LU Control Page
- ◆ For Busy/Task Set Full/Reservation Conflict if a command form a specific initiator gets rejected the target has to "remember this event" per initiator (3 bits cleared also by some actions like resets)
- ◆ When the LU state changes AND the interlock bit is 1 AND the Busy/Task Set Full/Reservation Conflict reject-remembered is 1 the target enters a UA pending state for the specific initiator (the "remember" bits could be cleared here or later)
- ◆ This UA condition remains "active" until explicitly cleared by an appropriate command and prevents other commands being accepted

Interlock – Proposal Outline (cont.)

- ♦ How is it better:
 - ◆ Confined to one initiator
 - ◆ Currently executing commands are not blocked as in ACA (ACA mandates command to be blocked in order to avoid generating a second sense)
 - ◆ Successfully sent AER means (at the target getting ack!) see SAM-2

Recovery (summary)

- ◆ SNACK is weak but useful
- ◆ The fast path price is paid
- ◆ A form of ACK might relax the need for data replay buffers at target