ISCSI Error Recovery

Mallikarjun Chadal apaka
Randy Haagens
Julian Satran
London, 6-7 Aug 2001

Why do we care?

o Error statistics — an attempt to extrapolate (innovatively) from
an experiment conducted at Stanford:
— Indicate errors are quite possible with data
— Lessfrequent with headers
— Enough to worry
— Not enough to build complex recovery

* The basic mechanisms built for detection are the expensive part
(counting).

* Two major sources of errors (together: transport path) —
— Unknown TCP checksum “escape’ performance
— Unknown Proxy performance (TCP and iSCSI)

Aug 06-07, 2001 Mallikarjun, Randy, Julian)

Error Management Design challengesin iSCS|

Three different camps of thinking on transport path performance....

Trust transport explicitly!
(transport is almost perfect, use digegts\yust to verify and signal failure to SCS)

Trust transport implicitly! Can’t trust transport!
(transport is perfect, iSCS digestsaren’t necessary) (transport is non-deterministic, do full recovery)

Current analysis and experimental evidence points to reality being
somewhere between “Trust transport explicitly” and “Can’t trust
transport” camps.

|||

]
i
w

Aug 06-07, 2001 Mallikarjun, Randy, Julian)

Error Recovery Philosophy in RevO7 Draft

»Mandate only the baseline session recovery mechanism, but with four
defined levels recovery.

* Within-command, to handle dropped PDUs but no command
restart.

= Within-connection, to handle dropped command/status but no
connection restart.

= Within-session (aka connection), to handle TCP connection
failures in the same session context.

= Session recovery, the worst-case and minimally required
recovery, terminates all 1/0s and ends the session.

Aug 06-07, 2001 Mallikarjun, Randy, Julian)

KKl
il
N

Error Recovery Philosophy in RevO7 Draft (contd.)

» Ensure interoperability between any two implementations
supporting different levels of error recovery.

» Define the error recovery mechanisms to ensure command
ordering even in the face of errors, for initiators that demand
ordering.

» Command counting is needed for ordering and flow control.
» Status sequence tracking and data sequence tracking (StatSN

and DataSN) can be dispensed with for only-session recovery
Implementations.

Aug 06-07, 2001 Mallikarjun, Randy, Julian)

How much doesit cost to do Error Recovery?

e No addition on the fast path (counting needed for other reasons)

e Logic onthe slow path with a moderate complexity (in
comparison, certainly less than security...)

 Mechanisms seem to be now well understood.

Aug 06-07, 2001 Mallikarjun, Randy, Julian)

ISCSI’s Error Management Tools

*Header and Data digests

» Sel ective negative acknowledgement (SNACK)
*Recovery R2T (if allowed by “ DataSequenceOrder=no”)
eUnsolicited NOP-IN

*Three flavors of “retry”

»Command replay (retry on the same connection after status
delivery)

»Command failover (retry of acommand on new connection)

» Command plugging (retry when a gap is suspected in command
seguence)

|||

[HTH!
i
\l

Aug 06-07, 2001 Mallikarjun, Randy, Julian)

| ssue #1: Should 1ISCSI define SNACK?

Cons

Vv SNACK purports to recover “dropped” PDUs, but itself is
susceptible to digest failures, and currently not architected to do
timers/retransmissions for a robust recovery.

» Options:

a) Assign aCmdSN (may lead to resource deadlocks!).

b) Accept the non-determinism (since the odds are very
low).

c) Leaveittoimplementationsto retransmit SNACKSs (if
they can deal with potential duplicate data PDUS).

d) Definetimer-based SNACK retransmissionsin the
protocol (more and more complexity!)

e) Drop SNACK!

Aug 06-07, 2001 Mallikarjun, Randy, Julian (D |

| ssue #1: Should iISCSI define SNACK? (contd.)

WV Through SNACK, iSCSI assumes traditional “transport” functions,
even when it is an application layer protocol in reality.
» Options:
a) Keepit since TCP s checksum escape rate is uncertain.
b) Rely on|PSec aways for data integrity (expensive!)
c) Drop SNACK to consider for iISCSI-02 (TCP checksum
could conceivably be adequate as well).

NV Optimizing the demands on memory and the back-end for targets
supporting SNACK requires data ACKs!
» Options:

a) Mandate data ACKswhenever SNACK is supported.

b) Assume that medium can be accessed to satisfy SNACKSs
(doesn’t work for non-idempotent devices!).

c) Mandate I/O replay buffer support for SNACK
(expensive!).

|I:||:I|
||II
I
(o]

Aug 06-07, 2001 Mallikarjun, Randy, Julian (D |

| ssue #1: Should iISCSI define SNACK? (contd.)
Pros

v'SNACK retrieves lost status PDUSs, which would otherwise force a
connection recovery resulting in several SCSI 1/0 errors.

v’ Since the draft alows the notion of a command retry, SNACK can
be considered merely a special case of command retry (partial 1/0).

v'Partial 1/0 recovery was considered a requirement for tape support
INn Networked Storage (the FC-TAPE effort in Fibre channel), and
SNACK deliversit.

v'SNACK enables a swift recovery of lost PDUs closer to the source
of error, as opposed to propagating the error up the stack resulting in
alonger error recovery time.

Aug 06-07, 2001 Mallikarjun, Randy, Julian (D) |

||||||

10

| ssue #1: Should iISCSI define SNACK? (contd.)

Bottomline;
What dowegain if wedrop SNACK?
L ess complex implementations, Less complex specification.

What do welose if wedrop SNACK?

If transport path failure rates are extremely low: nothing!

If failure rates are moderately high: a capable specification that
saves link & back-end bandwidth (by allowing partial 1/Os).

If failure rates are too high: not much since SNACK isn’t architected
to be robust!

“*Proposal is to continue to define SNACK for i1ISCSI-01.
Assumption is that tapes supporting queueing (very
few, If any!) must support 1/O replay buffer for SNACK
during 1ISCSI-01.

Aug 06-07, 2001 Mallikarjun, Randy, Julian (D) |

||||||

11

|ssue #2: How to layer error recovery capabilitiesfor smplicity?

Each level
IS a superset of the
capabilities of lower levels. For ex.,

Increasing level of complexity Level 1 support implies supporting
all capabilities of Level 0

and resource requirement
, and more.
/ Level 1 \

/ Level O \

“*Proposal is to create a hierarchy.
v’ Onetext key - “ErrorRecoveryLevel=n" - to
advertise/negotiate ALL error recovery capabilities.
v’ Ability to distinguish a transient recovery attempt failure
from that of the absence of the recovery capability.
v’ Fewer choices of implementation, significantly reducing
the test matrix (from 2" 1 to).

Aug 06-07, 2001 Mallikarjun, Randy, Julian)

llllll

12

|ssue #3: What isareasonable Error Recovery hierarchy?

Recovery layering can be reasoned as: wants a guarantee that a redoing

an 1/0O would deliver the exact
same data, even on conn. failures.

[Command replay 4

I
—wants connection failures not to !
[Connection Recovery 3 cause any SCSI errors. $
I
I

— ~wants digest errors not to cause
[Wlthl n-command Recovery 2 any task failures.

[Within-connection Recovery f]/\ “wants to prevent digest errors from
destroying the session/connection.

Session Recovery O]‘/\\don’t careif any errors destroy th

session, SCSI/wedge drivers take
are of all recovery.

Since incremental aspirations
are most likely to be -

13

Aug 06-07, 2001 Mallikarjun, Randy, Julian)

llllll

Continue commands
part-way acr oss conn. failures.

|ssue #3: What isareasonable Error Recovery hierarchy? (contd.)
Command Support recovery logout.

Replay the entire
Recover lost data/R2T PDUs.
replay 4

command after completion.
Connection recovery

Ithin-command recovery 2 Increasing

. : level of
Within-connection recovery 1 I civmp?exity
and
Session recovery (MUST) 0 resour ce
requirement

‘Recover lost statuses (SNACK).
Re-issue commandsthat may be lost.
Probeinitiator with NOP-Insfor statusacks,

Terminateall 1/0s.
Close all TCP connections.
Create anew session tore-issue 1/Os.

Aug 06-07, 2001 Mallikarjun, Randy, Julian (D) |

llllll

14

| ssue #3: Why thismodel?

v'Incremental book-keeping & resource requirements.

Recovery Level transition

| ncremental requirement

[0] Session

Mandatory to support.

[0=>1] Session =Within-connection

Atmost one PDU
retransmission per task.

[1= 2] Within-connection =>Within-command

Retransmit possibilities
Include data PDUs.

| 2= 3] Within-command => Connection

Retransmi ssion across
connections.

[3=4] Connection = Command replay

Replaying the entire
command (all PDUSs).

Aug 06-07, 2001

Mallikarjun, Randy, Julian

15

@

| ssue #3: Why thismodel? (contd.)

v'Rev07 already defines part of the proposed hierarchy, by
mandating data/status PDU retransmission support for Connection
Recovery support (currently viathe CommandFailoverSupport key).

v"Command replay with most resource requirements (with areplay
buffer) and highest implementation complexity is positioned at the
top.

v This model maintains the current idea that implementations
supporting only Level O do not have to keep track of any sequence
numbers (except CmdSN), since any digest failure would lead to
SEession recovery.

“*Proposal is to adopt this model into iISCSI.

Aug 06-07, 2001 Mallikarjun, Randy, Julian) 16

S0, to summarizethe proposals...

»Continue to define SNACK.

ssLayer the error recovery capabilities and create a new
single text key to summarize all capabilities —
“ErrorRecoverylLevel=n".

“* Adopt the proposed error recovery hierarchy into iISCSI.

Aug 06-07, 2001 Mallikarjun, Randy, Julian)

17

Aug 06-07, 2001

Backup

Mallikarjun, Randy, Julian

@

18

Within-command recovery example (dropped data PDU)

Initiator Target
CRC failure
| Data — | PDU
< SN:n
) N:n[— >
< retransmitted
data
—_ — — — — —
«—— —
datusack [— =P

Aug 06-07, 2001

Mallikarjun, Randy, Julian

Data PDU is dropped due
to 1ISCSI CRC failure.

Status PDU contains
EndDataSN that indicates a

gap.

SNACK message sent to
request data retransmission.

Data PDU retransmitted.

Status acknowledged
through ExpStatSN
mechanism.

19

@

Within-connection recovery example (dropped command/status)

Initiator Target e Command PDU isdropped
due to iISCSI CRC failure.
CRC failyre
Cmd Anunrelated status PDU
_ Cmd Cmd . .
— N2 TN el s n | indicates the expected
4 —> command using the
some al
v . ExpCmdSN.
Staus| __ ———
4— —EXp: n
o Cmd e« Command PDU is
T — — SN\ e : : 7] ”
ey [— — retransmitted, with “retry
Data Status gap pluggﬁd,__— blt %t.
for CmdL Jfor Cmd— —1/Ostream
<4 SN'n SN: n continues

20

Aug 06-07, 2001 Mallikarjun, Randy, Julian)

Within-session recovery example (failed TCP connection)

Initiator Target
conection failure
) TCP pipe
~
1N @ l..n —
activetasks | CID =K ﬁ
/\/
2
different TCP pipe ~

) CID=m <Logout CID=k>)

ends conn.
allegiance fq
tasks that we
activeon C

creates new
connection
alegiange

Aug 06-07, 2001

ey _
Reissue l...n TCP pipe
tasks
with same tags —» ciD= m)
S (retry))

Mallikarjun, Randy, Julian

Connection failureis
detected at initiator.

Initiator issues Logout for
CID =k on adifferent
connection in the same
Session.

All active tasks are reissued
on the other connection(s).

21

@

ISOS

Session recovery example (all connections failed)

Initiator

sessign failure

subsystem failure

=

reestablish
transpor{ instance

Aug 06-07, 2001

1...n

activetasks

errorsal
activel/Osto
SCSl

Reissuel...n
taskswith
therequired ->

ordering

Target

Mallikarjun, Randy, Julian

Session fallure is detected
by initiator.
— All activel/Os are

errored back to SCS
layer within initiator.

SCSI layer in initiator
reestablishes iISCSI session.

SCSI layer in initiator
reissues failed tasks with
the required ordering.

22

@

