
iSCSI Error Recovery

Mallikarjun Chadalapaka
Randy Haagens

Julian Satran
London, 6-7 Aug 2001

Aug 06-07, 2001 Mallikarjun, Randy, Julian 2

Why do we care?

• Error statistics – an attempt to extrapolate (innovatively) from
an experiment conducted at Stanford:
– Indicate errors are quite possible with data
– Less frequent with headers
– Enough to worry
– Not enough to build complex recovery

• The basic mechanisms built for detection are the expensive part
(counting).

• Two major sources of errors (together: transport path) –
– Unknown TCP checksum “escape” performance
– Unknown Proxy performance (TCP and iSCSI)

Aug 06-07, 2001 Mallikarjun, Randy, Julian 3

Error Management Design challenges in iSCSI

Three different camps of thinking on transport path performance….
Trust transport explicitly!

(transport is almost perfect, use digests just to verify and signal failure to SCSI)

Trust transport implicitly!
(transport is perfect, iSCSI digests aren’t necessary)

Can’t trust transport!
(transport is non-deterministic, do full recovery)

Current analysis and experimental evidence points to reality being
somewhere between “Trust transport explicitly” and “Can’t trust
transport” camps.

Aug 06-07, 2001 Mallikarjun, Randy, Julian 4

Error Recovery Philosophy in Rev07 Draft

�Mandate only the baseline session recovery mechanism, but with four
defined levels recovery.

�Within-command, to handle dropped PDUs but no command
restart.

�Within-connection, to handle dropped command/status but no
connection restart.

�Within-session (aka connection), to handle TCP connection
failures in the same session context.

�Session recovery, the worst-case and minimally required
recovery, terminates all I/Os and ends the session.

Aug 06-07, 2001 Mallikarjun, Randy, Julian 5

� Ensure interoperability between any two implementations
supporting different levels of error recovery.

� Define the error recovery mechanisms to ensure command
ordering even in the face of errors, for initiators that demand
ordering.

� Command counting is needed for ordering and flow control.

� Status sequence tracking and data sequence tracking (StatSN
and DataSN) can be dispensed with for only-session recovery
implementations.

Error Recovery Philosophy in Rev07 Draft (contd.)

Aug 06-07, 2001 Mallikarjun, Randy, Julian 6

How much does it cost to do Error Recovery?

• No addition on the fast path (counting needed for other reasons)

• Logic on the slow path with a moderate complexity (in
comparison, certainly less than security…)

• Mechanisms seem to be now well understood.

Aug 06-07, 2001 Mallikarjun, Randy, Julian 7

iSCSI’s Error Management Tools

•Header and Data digests
•Selective negative acknowledgement (SNACK)
•Recovery R2T (if allowed by “DataSequenceOrder=no”)
•Unsolicited NOP-IN
•Three flavors of “retry”

�Command replay (retry on the same connection after status
delivery)

�Command failover (retry of a command on new connection)
�Command plugging (retry when a gap is suspected in command

sequence)

Aug 06-07, 2001 Mallikarjun, Randy, Julian 8

Issue #1: Should iSCSI define SNACK?

Cons

� SNACK purports to recover “dropped” PDUs, but itself is
susceptible to digest failures, and currently not architected to do
timers/retransmissions for a robust recovery.
� Options:

a) Assign a CmdSN (may lead to resource deadlocks!).
b) Accept the non-determinism (since the odds are very

low).
c) Leave it to implementations to retransmit SNACKs (if

they can deal with potential duplicate data PDUs).
d) Define timer-based SNACK retransmissions in the

protocol (more and more complexity!)
e) Drop SNACK!

Aug 06-07, 2001 Mallikarjun, Randy, Julian 9

Issue #1: Should iSCSI define SNACK? (contd.)
�Through SNACK, iSCSI assumes traditional “transport” functions,

even when it is an application layer protocol in reality.
� Options:

a) Keep it since TCP’s checksum escape rate is uncertain.
b) Rely on IPSec always for data integrity (expensive!)
c) Drop SNACK to consider for iSCSI-02 (TCP checksum

could conceivably be adequate as well).

�Optimizing the demands on memory and the back-end for targets
supporting SNACK requires data ACKs!
� Options:

a) Mandate data ACKs whenever SNACK is supported.
b) Assume that medium can be accessed to satisfy SNACKs

(doesn’t work for non-idempotent devices!).
c) Mandate I/O replay buffer support for SNACK

(expensive!).

Aug 06-07, 2001 Mallikarjun, Randy, Julian 10

Issue #1: Should iSCSI define SNACK? (contd.)
Pros

�SNACK retrieves lost status PDUs, which would otherwise force a
connection recovery resulting in several SCSI I/O errors.

�Since the draft allows the notion of a command retry, SNACK can
be considered merely a special case of command retry (partial I/O).

�Partial I/O recovery was considered a requirement for tape support
in Networked Storage (the FC-TAPE effort in Fibre channel), and
SNACK delivers it.

�SNACK enables a swift recovery of lost PDUs closer to the source
of error, as opposed to propagating the error up the stack resulting in
a longer error recovery time.

Aug 06-07, 2001 Mallikarjun, Randy, Julian 11

Issue #1: Should iSCSI define SNACK? (contd.)

Bottomline:
What do we gain if we drop SNACK?
Less complex implementations, Less complex specification.

What do we lose if we drop SNACK?
If transport path failure rates are extremely low: nothing!
If failure rates are moderately high: a capable specification that
saves link & back-end bandwidth (by allowing partial I/Os).
If failure rates are too high: not much since SNACK isn’t architected
to be robust!

�Proposal is to continue to define SNACK for iSCSI-01.
Assumption is that tapes supporting queueing (very
few, if any!) must support I/O replay buffer for SNACK
during iSCSI-01.

Aug 06-07, 2001 Mallikarjun, Randy, Julian 12

Issue #2: How to layer error recovery capabilities for simplicity?

Level 0

Level 1

Increasing level of complexity
and resource requirement

.

.

.

�Proposal is to create a hierarchy.
�One text key - “ErrorRecoveryLevel=n” - to
advertise/negotiate ALL error recovery capabilities.
�Ability to distinguish a transient recovery attempt failure
from that of the absence of the recovery capability.
�Fewer choices of implementation, significantly reducing
the test matrix (from 2n-1 to n).

Each level
is a superset of the

capabilities of lower levels. For ex.,
Level 1 support implies supporting

all capabilities of Level 0
and more.

Aug 06-07, 2001 Mallikarjun, Randy, Julian 13

Issue #3: What is a reasonable Error Recovery hierarchy?

Session Recovery 0

Within-connection Recovery 1

Within-command Recovery 2

Connection Recovery 3

Command replay 4

Recovery layering can be reasoned as:

Since incremental aspirations
are most likely to be -

wants a guarantee that a redoing
an I/O would deliver the exact
same data, even on conn. failures.

wants connection failures not to
cause any SCSI errors.

wants digest errors not to cause
any task failures.

wants to prevent digest errors from
destroying the session/connection.

don’t care if any errors destroy the
session, SCSI/wedge drivers take
care of all recovery.

Aug 06-07, 2001 Mallikarjun, Randy, Julian 14

Issue #3: What is a reasonable Error Recovery hierarchy? (contd.)

Session recovery (MUST) 0

Within-connection recovery 1

Replay the entire
command after completion.

Within-command recovery 2
Connection recovery 3

Command
replay 4

Continue commands
part-way across conn. failures.

Support recovery logout.

Recover lost data/R2T PDUs.

Recover lost statuses (SNACK).
Re-issue commands that may be lost.

Probe initiator with NOP-Ins for status acks.

Terminate all I/Os.
Close all TCP connections.

Create a new session to re-issue I/Os.

Increasing
level of
complexity
and
resource
requirement

Aug 06-07, 2001 Mallikarjun, Randy, Julian 15

Issue #3: Why this model?

Replaying the entire
command (all PDUs).

[3�4] Connection � Command replay

Retransmission across
connections.

[2�3] Within-command � Connection

Retransmit possibilities
include data PDUs.

[1�2] Within-connection �Within-command

Atmost one PDU
retransmission per task.

[0�1] Session �Within-connection

Mandatory to support.[0] Session

Incremental requirementRecovery Level transition

�Incremental book-keeping & resource requirements.

Aug 06-07, 2001 Mallikarjun, Randy, Julian 16

Issue #3: Why this model? (contd.)

�Rev07 already defines part of the proposed hierarchy, by
mandating data/status PDU retransmission support for Connection
Recovery support (currently via the CommandFailoverSupport key).

�Command replay with most resource requirements (with a replay
buffer) and highest implementation complexity is positioned at the
top.

�This model maintains the current idea that implementations
supporting only Level 0 do not have to keep track of any sequence
numbers (except CmdSN), since any digest failure would lead to
session recovery.

�Proposal is to adopt this model into iSCSI.

Aug 06-07, 2001 Mallikarjun, Randy, Julian 17

So, to summarize the proposals…

�Continue to define SNACK.

�Layer the error recovery capabilities and create a new
single text key to summarize all capabilities –
“ErrorRecoveryLevel=n”.

�Adopt the proposed error recovery hierarchy into iSCSI.

Aug 06-07, 2001 Mallikarjun, Randy, Julian 18

Aug 06-07, 2001 Mallikarjun, Randy, Julian 19

Within-command recovery example (dropped data PDU)

• Data PDU is dropped due
to iSCSI CRC failure.

• Status PDU contains
EndDataSN that indicates a
gap.

• SNACK message sent to
request data retransmission.

• Data PDU retransmitted.

• Status acknowledged
through ExpStatSN
mechanism.

Status
PDUData

SN: n

SNACK
SN: n

Data
SN: n

indirect
status ack

retransmitted
data

Initiator Target

CRC failure

Aug 06-07, 2001 Mallikarjun, Randy, Julian 20

• Command PDU is dropped
due to iSCSI CRC failure.

• An unrelated status PDU
indicates the expected
command using the
ExpCmdSN.

• Command PDU is
retransmitted, with “retry”
bit set.

Initiator Target

Status
Exp: n

CRC failure

Cmd
SN: n

Cmd
SN: n

(retry)

Cmd
SN: n+1

Cmd
SN: n+2

some delay

Status
for Cmd

SN: n

Data
for Cmd

SN: n

gap plugged,
I/O stream
continues

Within-connection recovery example (dropped command/status)

Aug 06-07, 2001 Mallikarjun, Randy, Julian 21

Within-session recovery example (failed TCP connection)

• Connection failure is
detected at initiator.

• Initiator issues Logout for
CID = k on a different
connection in the same
session.

• All active tasks are reissued
on the other connection(s).

connection failure

1…n
active tasks CID = k

TCP pipe

CID = m <Logout CID=k>

different TCP pipe

Reissue 1…n
tasks

with same tags
(retry)

CID = m

TCP pipe

session
session

Initiator Target

creates new
connection
allegiance

ends conn.
allegiance for
tasks that were
active on CID = k

Aug 06-07, 2001 Mallikarjun, Randy, Julian 22

Session recovery example (all connections failed)

• Session failure is detected
by initiator.
– All active I/Os are

errored back to SCSI
layer within initiator.

• SCSI layer in initiator
reestablishes iSCSI session.

• SCSI layer in initiator
reissues failed tasks with
the required ordering.

session failure

session

SC
SI

1…n
active tasks

Reissue 1…n
tasks with

the required
ordering

new
session

errors all
active I/Os to
SCSI

TargetInitiator

service delivery
subsystem failure

reestablish
transport instance

