Fast Mobile IP Handoffs in Cellular Systems

Presented by: Karim El Malki (karim@dcs.shef.ac.uk)

(draft-elmalki-mobileip-fast-handoffs-00.txt by K. El Malki, N. Fikouras and S. Cvetkovic)

- MIP Handoff performance can cause excessive packet loss and service disruption
- Smooth handoffs cannot fully support "inelastic" real-time applications (e.g. IP Telephony)
- ◆ Fast Handoff method uses the Hierarchical Agents Hierarchies may contain more than one level
- ◆ Fast Handoffs require an advertisement extension to support hierarchical advertising

MIP Handoff Performance

TCP Performance over MIP with LCS (Path MTU Discovery)

Service Disruption = 6.3s

TCP Performance
over MIP with ECS
(Path MTU Discovery)

| 3.25e+06 | 3.25e+06 | 3.25e+06 | 1st timeout | 4th timeout | 1.6 sec | 1.6 sec | 2.7s

Hierarchical Mobility Agents

♦ Smooth and Fast Handoffs

Fast Mobile IP Handoffs

```
If PM comparison indicates discovery of new subnet then

Movement has been detected (cached PFA address extension)

Find common PFA

If there is a common PFA then

Send a registration request using the common PFA as COA

Set the S bit for a simultaneous binding

Use a short registration lifetime (3*advertisement rate)

else

Send a registration request using the TPFA as COA

Set the S bit for a simultaneous binding

Use a short registration lifetime (3*advertisement rate)
```

MD methods: Eager to add a binding, Lazy to abandon an existing binding

The Fast Handoffs Advertisement Extension

Type

To be defined

Length

2+(4*N), where N is the sum of a TPFA and the number of PFA addresses advertised

TPFA IP Address

The TPFA IP Address field contains the Top Proxy Foreign Agent's address.

PFA IP Address

The PFA IP Address fields contains the Proxy Foreign Agent addresses.

Fast Mobile IP Handoffs in Cellular Systems

- Support for "loss-less" "inelastic" real-time traffic (IP Telephony)
- ◆ Easy migration to CDMA 3rd/4th Generation Cellular Systems (simple coordination of operations between layers 2 & 3)
- Hierarchical Networks are easily scaleable (i.e. multi-level)
- Mobile Networks (Mobile VPNs)
 - Aeroplanes etc.
- Cellular QoS based on IntServ and DiffServ