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Early Emulation Successes

Stress testing of networking code via macfilter

� Used to debug our 8 node ad hoc network testbed

� Description of interesting/problematic movement scenarios
created

� Changing network topology extracted into trace file

� Physical machines running actual implementation
synchronously read trace-file

� Machines prevented from receiving packets from non-neighbors

� Described at previous IETF and in CMU CS Tech Report 99-116

Found to be critical for achieving code stability, however cannot be
used for performance evaluation

� Propagation model grossly simplified

� MAC-layer effects unaccounted for
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Goal of Current Emulation Work

Evaluate real systems under ad hoc network conditions:

� Performance study of network protocols or applications

� Without implementing them in ns-2

� Without deploying and operating physical machines in the field

� Using real implementation and real user pattern

� Only the network environment is simulated

Evaluating real systems with just simulation is not practical:

� Difficult to model real applications inside the simulator

� Real systems are significantly performance tuned

Example: Evaluate performance of CMU Coda file system in an ad
hoc network:

� Coda is 100+ KLOC implemented and tuned

� Coda researchers have expertise to evaluate their system but
can’t create network environments
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Method
� Leverage emulation work by Kevin Fall and VINT project

� ns-server is a single central machine running ns-2

� Real application code runs on real machines directing real
packets to “default router” (ns-server)

� User creates scenarios to control the environment inside ns-2:

– Movement pattern of all mobile nodes inside ns-2

– Background traffic

MN1

ns-server

MN2

MN3MN4

Logical view of emulation setup
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Informal Validation of Emulation Method

Example: Compare FTP behavior between simulation and emulation:

� ns-server: 450 MHz Pentium II CPU, running FreeBSD 3.1

� 10 simulated nodes

� Compare 30 MB FTP transfer between simulation and emulation

� 2 additional simulated FTP connections for background traffic

TCP time–sequence # plots
have basically the same shape:

But how well does this scale?
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A More Challenging Example
� 16 simulated nodes moving in a complicated pattern with CBR

and FTP background traffic

� 30 MB FTP transfer simulated in ns-2

� 30 MB FTP transfer between two physical nodes with emulation
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Evaluating Emulation Scalability

Limitations on emulation scalability:

� System effects: scheduling delays, potential buffer overruns

� Additional latency of transferring packets to/from ns-server

� Only so much one CPU can do

Experimental scenario:

� Conduct real FTP transfer
between 2 physical nodes

� Vary the number of other
simulated nodes in ns-2

� Vary the amount of
background traffic
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Scalability Results Summary

Ideally: emulation throughput = simulation throughput

� Pure simulation achieves 1.49 Mb/s on a 2 Mb/s link

� Emulation achieves throughput that depends on overall
simulator workload:
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Does the Simulator Keep up with Real Time?
� For event scheduled at t1 but processed at t2: time-lag = t2 – t1

� Record the time-lag for each delayed event

� Histograms show almost all time-lags are less than 4 ms
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All of the Histograms
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Conclusion

Emulation works for networks of sufficient size and complexity to
enable study of interesting application scenarios

� Using direct emulation based on ns leverages future
improvements to propagation models

� The bottleneck is the real-time requirement in ns-server

� Currently using to evaluate the Coda distributed file system

Open questions:

� How far can this technique be generalized?

� How to ensure performance measurements are meaningful?

– Open loop: evaluate emulation system on many scenarios
using reference application with good simulation models

– Closed loop: after each emulation run, examine emulation
trace to determine if emulation system introduced artifacts

– Validate against real system in ad hoc network testbed
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