
Emulation of Ad Hoc Networks

David A. Maltz, Qifa Ke,
David B. Johnson

CMU Monarch Project

Computer Science Department
Carnegie Mellon University

http://www.monarch.cs.cmu.edu/

Carnegie
Mellon

CMU Monarch Project monarch@monarch.cs.cmu.edu

Early Emulation Successes

Stress testing of networking code via macfilter

� Used to debug our 8 node ad hoc network testbed

� Description of interesting/problematic movement scenarios
created

� Changing network topology extracted into trace file

� Physical machines running actual implementation
synchronously read trace-file

� Machines prevented from receiving packets from non-neighbors

� Described at previous IETF and in CMU CS Tech Report 99-116

Found to be critical for achieving code stability, however cannot be
used for performance evaluation

� Propagation model grossly simplified

� MAC-layer effects unaccounted for

CMU Monarch Project monarch@monarch.cs.cmu.edu

Goal of Current Emulation Work

Evaluate real systems under ad hoc network conditions:

� Performance study of network protocols or applications

� Without implementing them in ns-2

� Without deploying and operating physical machines in the field

� Using real implementation and real user pattern

� Only the network environment is simulated

Evaluating real systems with just simulation is not practical:

� Difficult to model real applications inside the simulator

� Real systems are significantly performance tuned

Example: Evaluate performance of CMU Coda file system in an ad
hoc network:

� Coda is 100+ KLOC implemented and tuned

� Coda researchers have expertise to evaluate their system but
can’t create network environments

CMU Monarch Project monarch@monarch.cs.cmu.edu

Method
� Leverage emulation work by Kevin Fall and VINT project

� ns-server is a single central machine running ns-2

� Real application code runs on real machines directing real
packets to “default router” (ns-server)

� User creates scenarios to control the environment inside ns-2:

– Movement pattern of all mobile nodes inside ns-2

– Background traffic

MN1

ns-server

MN2

MN3MN4

Logical view of emulation setup

CMU Monarch Project monarch@monarch.cs.cmu.edu

Informal Validation of Emulation Method

Example: Compare FTP behavior between simulation and emulation:

� ns-server: 450 MHz Pentium II CPU, running FreeBSD 3.1

� 10 simulated nodes

� Compare 30 MB FTP transfer between simulation and emulation

� 2 additional simulated FTP connections for background traffic

TCP time–sequence # plots
have basically the same shape:

But how well does this scale?

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5x 10
7

time (seconds)

by
te

s
tr

an
sf

er
ed

simulation
emulation

CMU Monarch Project monarch@monarch.cs.cmu.edu

A More Challenging Example
� 16 simulated nodes moving in a complicated pattern with CBR

and FTP background traffic

� 30 MB FTP transfer simulated in ns-2

� 30 MB FTP transfer between two physical nodes with emulation

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3x 10
7

time (seconds)

by
te

s
tr

an
sf

er
ed

simulation
emulation

CMU Monarch Project monarch@monarch.cs.cmu.edu

Evaluating Emulation Scalability

Limitations on emulation scalability:

� System effects: scheduling delays, potential buffer overruns

� Additional latency of transferring packets to/from ns-server

� Only so much one CPU can do

Experimental scenario:

� Conduct real FTP transfer
between 2 physical nodes

� Vary the number of other
simulated nodes in ns-2

� Vary the amount of
background traffic

��
��
��

��
��
�����
���
���

���
���
���

��������

�
�
�
�

�
�
�
�

��������

��
��
��
��

CBR
30 M Bytes

SINK

SRC

Scalability Test Scenario

CMU Monarch Project monarch@monarch.cs.cmu.edu

Scalability Results Summary

Ideally: emulation throughput = simulation throughput

� Pure simulation achieves 1.49 Mb/s on a 2 Mb/s link

� Emulation achieves throughput that depends on overall
simulator workload:

4

8 1.30 Mb/s

16

10 50 100

1.44 Mb/s

960 Kb/s

0 300

of

 n
od

es

of CBR packets/second

FTP Throughput Achieved

CMU Monarch Project monarch@monarch.cs.cmu.edu

Does the Simulator Keep up with Real Time?
� For event scheduled at t1 but processed at t2: time-lag = t2 – t1

� Record the time-lag for each delayed event

� Histograms show almost all time-lags are less than 4 ms

 4 54 104 154 204 ms

10
1

10
2

10
3

10
4

10
5

10
6

Max lag: 355 ms Total # of events: 1.64e+07

100 CBR packets/sec 16 nodes

of
 ti

m
e-

la
g

ev
en

ts

CMU Monarch Project monarch@monarch.cs.cmu.edu

All of the Histograms

10
1

10
2

10
3

10
4

10
5

10
6

1.03e+06

0 packets/sec
4

si
m

ul
at

ed
 n

od
es

1.30e+06

10 packets/sec

2.38e+06

50 packets/sec

3.73e+06

100 packets/sec

9.13e+06

300 packets/sec

10
1

10
2

10
3

10
4

10
5

10
6

1.65e+06

8
si

m
ul

at
ed

 n
od

es

2.28e+06 4.80e+06 7.95e+06 2.06e+07

 4 54 104 154 204

10
1

10
2

10
3

10
4

10
5

10
6

2.89e+06

16
 s

im
ul

at
ed

 n
od

es

 4 54 104 154 204

4.24e+06
 4 54 104 154 204

9.65e+06
 4 54 104 154 204

1.64e+07
 4 54 104 154 204

4.35e+07

CMU Monarch Project monarch@monarch.cs.cmu.edu

Conclusion

Emulation works for networks of sufficient size and complexity to
enable study of interesting application scenarios

� Using direct emulation based on ns leverages future
improvements to propagation models

� The bottleneck is the real-time requirement in ns-server

� Currently using to evaluate the Coda distributed file system

Open questions:

� How far can this technique be generalized?

� How to ensure performance measurements are meaningful?

– Open loop: evaluate emulation system on many scenarios
using reference application with good simulation models

– Closed loop: after each emulation run, examine emulation
trace to determine if emulation system introduced artifacts

– Validate against real system in ad hoc network testbed

CMU Monarch Project monarch@monarch.cs.cmu.edu

