An Approach to Multicast Routing in AHNs

Katia Obraczka USC Information Sciences Institute

Joint work with Gene Tsudik as part of the NSF IMAHN project

Background

Project Goals:

- 1. Multicast in Ad Hoc Networks
- 2. Integrated multicast
- 3. Host migration and multicast adaptation

Multicast in Ad Hoc Networks <u>Main Goal</u>: new multicast protocols *specifically* for AHNs.

* Support very high mobility

 * no pre-set speed limit
 * no direction constraints
 * frequent outages

 * Balance robustness and efficiency.

Observations

- * Adapting *fixed* multicast not a good idea.
 * state in routers
 - * frequent neighbor announcements
- * Flooding variations show some promise in very mobile nets.

Anticipated solution: no single solution

- * Adaptive flooding in small, very dynamic AHNs.
- * State-based in more static AHNs.
- * Link-state based (a la BBN's MMWS) among clusters.

Adaptive Flooding

* Emphasis on:

* Reliable delivery.

* Minimal state retention.

* Features:

- * Packets assigned unique ID (src, grp, time, sequence #).
- * Hosts keep (valid) received packets.
- * (Valid) packets can be re-forwarded if host acquires at least one new neighbor.
- * Packets with expired TTL are discarded.

Ongoing simulations: how good is flooding?

- * Evaluate the effect of mobility on pure flooding.
- * Higher mobility => higher packet loss?

Simulation Environment

- * UCLA's GloMoSim
- * Simulation parameters (some of many):
 - * mobility patterns,
 - * network size,
 - * group size, spread, dynamics.

Simulation environment (cont'd)

- * Number of nodes:50
- * Field size: 1000x1000
- * Power range: 225m
- * Number packets xmitted by each node: 25
- * Propagation function: free space
- * Radio type: no capture effect
- * MAC protocol: CSMA

Mobility model

- * GloMoSim model:
 - * Mobility probability (set to 1)
 - * Mobility interval
 - * Mobility unit
 - * Pattern: "random walk"
- * Modified model:
 - * Node picks random direction and follows it,
 - * Until it reaches wall,
 - * Then picks random direction again.

Present and (near) future

- * Reproduce results with ns-2+(CMU mobility support).
- * Implement adaptive flooding in GloMoSim (new version?) and ns2+.
- * Comparison with other proposed multicast routing protocols, eg, UCLA's ODMRP.