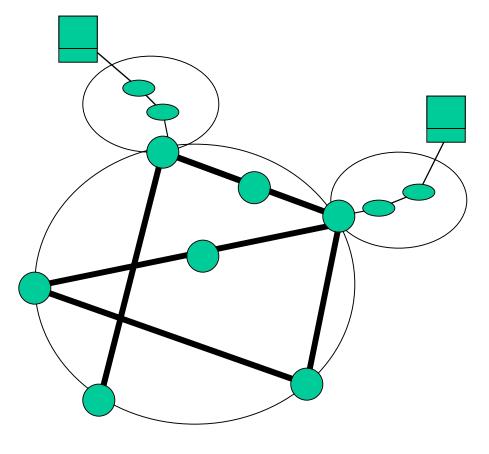


Requirements (in aggregated domains)


- No (limited) awareness of individual RSVP flows
 - Scheduling state
 - RSVP state
- Must satisfy QoS requirements of individual flows
 - Delivered service
 - Path characterization (ADSPEC)
- Must maintain isolation of flows
 - Nonconformant traffic of one flow must not zap others
- Must not limit ability to support individual flow reservations in other domains
 - Particularly, must be able to un-aggregate

Draft-guerin...

- Document space
 - Survey range of possibilities
 - Assumes unicast
 - Covers full spectrum of issues
 - RSVP state management
 - Aggregate scheduling requirements (briefly)
 - Admission control
 - Path characterization
 - All services

Tunneling Approach

- Point-to-point RSVP tunnels
 between ingress and egress routers of the aggregated domain
- End-to-end QoS data and RSVP messages tunnel through domain

Tunneling

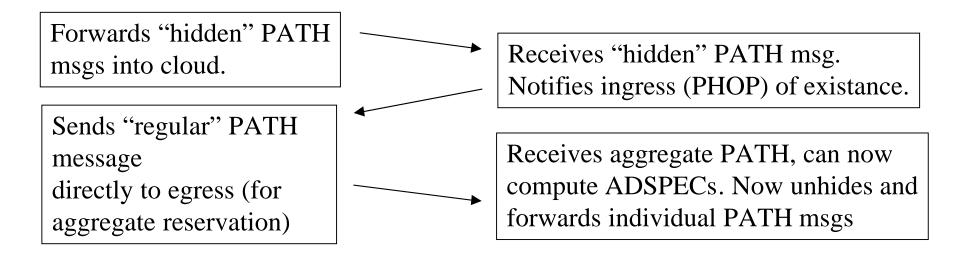
- Ingress, egress routers do RSVP for aggregate pipe resources
- Egress routers adjust reservations for flow arrival/departure and routing changes
- Individual PATH adspecs updated by egress based on cached aggregate PATH adspec

- Drawbacks
 - Difficulty maintaining isolation of individual flows
 - If using same service, must send nonconformant traffic outside the tunnel
 - Encap/decap/data overhead

Tag-based aggregation

• Approach

- Scheduling class in core of net selected by packet tag set at ingress
- Class selected based on reservation request
- Individual RSVP
 messages sent through
 domain transparently
- Individual PATH
 messages (adspec)
 updated at egress


• Issues

- Definition of
 appropriate scheduling
 behavior for
 aggregated flows
- Transparent location of flow egress/ingress points
- (Dynamic) allocation of backbone resources
- Computation of adspec information

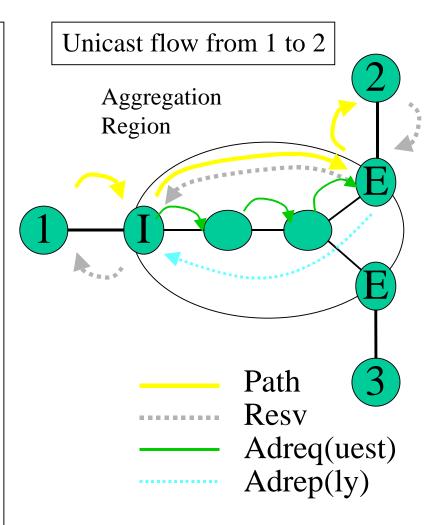
Class-based RSVP approach

Ingress Router

Egress Router

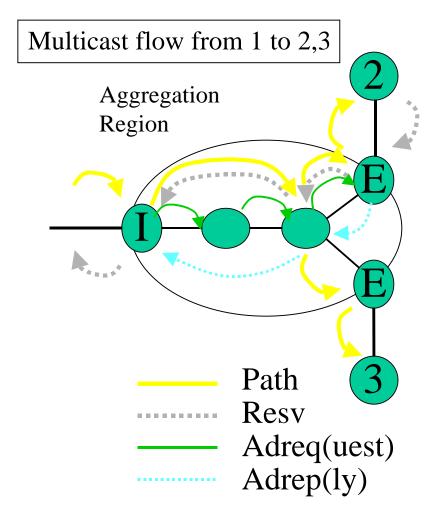
Add flow in individual RESV to list of flows that are tagged for special forwarding.

Receives RESV msg from new flow.


- Create or update reservation for aggregate path (RESV to ingress).
- Send individual RESV messages directly to ingress

Draft-berson...

- Document space
 - Unicast and multicast
 - Controlled-load like services
 - Assumes measurement-based admission control
 - Does not explicitly discuss adspec/characterization issues
 - Primary focus on RSVP / signalling


Berson - unicast

- Flows scheduled as aggregated traffic classes in the region
- Retains hop-by-hop per-path admission control
- Packets are tagged with class by ingress router
- Interior routers ignore normal RSVP messages (RSVP "off")
- Arrival of RESV at region ingress triggers hop-by-hop admission control along data path (Adreq)
- Collected result returned to ingress router (Adrep) – starts tagging packets if reservation accepted

Berson - multicast

- Multicast flows require some state within the region
 - Heterogeneous reservations
 - Qos and best-effort branches
- Creation of split point "wakes up" RSVP session
 - Next PATH message creates
 RSVP state. Router installs
 "retagger" to remark packets
 leaving reserved path to new QoS
- Admission control done over homogeneous reservation segments
 - Newly awake router becomes endpoint for adreq/adrep msgs

Comments

- Both of these drafts assume per-path dynamic management of aggregate resources
- Both suggest small changes to RSVP
- Neither creates a clear and shining line between "outer" RSVP and "inner" mechanism
 - But both are close
 - Some efficiency gained by lack of complete separation
- Consider these ideas as tools in a toolkit
 - Look for a clean functional interface
 - That can support these and other techniques