TCP Fast Open Draft Revision draft-cheng-tcpm-fastopen-01.txt

H. K. Jerry Chu - hkchu@google.com On behalf of Yuchung Cheng, Sivasankar Radhakrishnan, Arvind Jain

Agenda

- Draft change/addition
- Performance numbers
- P-HTTP
- Next steps

Draft Changes

- Fine tuning the cookie protocol
 - Check system limit before validating cookies
 - To avoid cookie validation overhead when under attack
 - Allow differentiation between non-TFO capable server vs temporarily TFO-disabled services
 - Recommend client to cache negative response
 - Validate cookie by simply regenerate a valid one and compare (if regen can be done independently)
- Cost of AES encryption negligible in our tests

Performance Numbers

- Data collected from both client (through Chrome browsers) and server sides
- 3WHS delay as percentage of total latency
 - 8-28% of cold requests
 - 5-7% of all requests including both cold and warm
- TFO improved PLT by 10-40%
- More details to be presented at ACM CoNext/2011 http://research.google.com/pubs/pub37517.html

Persistent HTTP

- Only cold requests will suffer 3WHS delay
- Widely deployed and effective
 - 92% of HTTP requests are HTTP/1.1
- Persistency is limited
 - 33% of requests by Chrome over new connections
 - Yahoo! CDN sees only 2.4 requests per connection in average

http://conferences.sigcomm.org/imc/2011/docs/p569.pdf

Persistent HTTP (cont')

- Limited persistency due to
 - Browser opening multiple concurrent connections
 - Domain sharding
 - Middlebox resource constraints
 - Power saving requirement from mobile devices
- Middlebox silently dropped unmapped pkts (TCP RST not required by RFC5382) problematic for browser user experience

Next Steps

- WG adoption
- Implementation completion & testing
- Experimental deployment