
Proportional Rate Reduction for TCP
draft-ietf-tcpm-proportional-rate-reduction-00.txt

IETF 82
16-Nov-2011

Matt Mathis, Nandita Dukkipati, Yuchung Cheng

We want to improve TCP recovery

● Traces frequently show avoidable timeouts
○ TCP misses "obvious" opportunities to transmit

● Current implementation based in part on my prior work
○ Rate-Halving w/ bounding parameters

■ Send data on alternate ACKs during recovery
■ Incomplete ID and web pages from 1998

○ We abandoned it due to unsolved corner cases
○ Philosophy was to aim for cwnd=(FlightSize-losses)/2

■ Too conservative
■ Application stalls are treated like losses

○ Hard wired 50% cwnd reduction, even if CC does not
■ e.g. CUBIC uses only a 30% reduction

Standard TCP fast recovery (RFC3517)

FlightSize: outstanding (original) packets
pipe: estimated packets in the network

Entering recovery:
 cwnd = ssthre�sh = FlightSize/2
 retransmit_first_loss()

For every ACK during recovery:
 pipe = update_scoreboard()
 if cwnd > pipe
 transmit(cwnd - pipe)

Issues
● Half-RTT silence under light losses
● May (re)transmit large bursts under heavy losses
● Pipe can be wrong in the presence of reordering

Working from first principles

● Strictly packet conserving:
○ Arriving data triggers equal transmissions
○ Sender computes DeliveredData on each ACK

■ Well defined and robust even with reordering
■ Use DeliveredData as the recovery clock
■ Adjusted +/-1 to track cwnd/ssthresh

● Want recovery rate to be proportional to CC change
● Want final window to be chosen by CC

○ As it is with RFC 3517
○ Losses delay transmissions, but final window is the same
○ If losses exceed CC change, what action?

When losses exceed CC reduction

Three choices:
● Conservative bound (akin to rate halving)

○ Follow strict packet conservation during recovery
○ Window too small at the end of recovery
○ Slowstart after recovery

● Unlimited bound (follows 3517)
○ Allow full (ssthresh-pipe) bursts during recovery

● Slowstart bound
○ Relax conservative bound by 1 segment per ACK
○ Same total number of transmissions as 3517, but not

in bursts

PRR with slowstart bound

Algorithm:
if (pipe > ssthresh) // PRR.
 sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
else // Slow start.
 limit = max(prr_delivered − prr_out, DeliveredData) + 1
 sndcnt = MIN(ssthresh - pipe, limit)
On any data transmission or retransmission:
prr_out += (data sent)

Start of recovery:
ssthresh = CongCtrlAlg() // Target cwnd after recovery.
RecoverFS = snd.nxt - snd.una // FlightSize.
prr_delivered = prr_out = 0 // Accounting.

On each ACK in recovery, compute:
// DeliveredData: #pkts newly delivered to receiver.
DeliveredData = delta(snd.una) + delta(SACKd)
// Total pkts delivered in recovery.
prr_delivered += DeliveredData
pipe = RFC 3517 pipe algorithm

http://tools.ietf.org/html/rfc3517

PRR properties

● Better (ACK) clocking
○ fewer timeouts
○ more accurate fast recovery in spite of reordering,

stretch acks, etc
○ smoother transmissions during recovery

● Cwnd converges to ssthresh
○ Not effected by additional loss or application stalls

PRR results

● Performs better than Rate Halving
○ Avoids excess window reductions
○ 3-10% better transaction response times

● Performs better than 3517
○ Avoids consequences of sending bursts

 (45% loss episodes cause pipe <= ssthresh)
■ Fewer lost retransmissions
■ Fewer timeouts

● See full results in IMC11 paper (slides attached)

New results for youtube in India

 Linux Standard PRR

Retransmission rate 5.0% 6.6% 5.6%

Retransmission lost 2.4% 16.4% 4.8%

Slow start after recovery 56% 1% 0%

Standard TCP may cause high lost retransmission. PRR
strikes the balance.

● Similar configuration as the Web experiment
● 3 days in DCyoutube-India
● Average video response is 2.3MB

Onward

● Results are overwhelmingly good
● No substantiated downsides
● Already staged to Linux upstream

Post script: Total TCP retransmissions
in two Google data centers

15.2% USA retransmissions are for connections that NEVER
recover! WHAT IS GOING ON?

DCWeb-USA DCYoutube-India

IMC11 presentation

● Below is Yuchung's full presentation to IMC11
 (Internet Measurement Conference)

Proportional Rate Reduction for TCP

A fast and smooth loss recovery

Nandita Dukkipati, Matt Mathis, Yuchung Cheng, Monia Ghobadi

Losses hurt Web latency bad

Google HTTP responses. 6.1% experience losses.

How does TCP recover from losses?

TCP retransmission breakdown in two Google DCs. Over 96%
connections support SACK.

DCWeb-USA DCYoutube-India

Standard TCP fast recovery (RFC3517)

FlightSize: outstanding (original) packets
pipe: estimated packets in the network

Entering recovery:
 cwnd = ssthre�sh = FlightSize/2
 retransmit_first_loss()

For every ACK during recovery:
 pipe = update_scoreboard()
 if cwnd > pipe
 transmit(cwnd - pipe)

Issues
● Half-RTT silence under light losses
● May (re)transmit large burst under heavy losses

Linux TCP fast recovery
● Rate-halving: send one packet every other ACK

○ Too conservative under heavy losses

● cwnd moderation: cwnd = pipe+1 exiting recovery
○ Often slow start w/ cwnd == 2

Courtesy of "Application Flow Control in YouTube Video Streams", CCR, Apr., 2011

Proportional rate reduction (PRR)

Design principles

● VJ's packet conservation principle

● Decouples loss detection and window adjustment
○ Loss detection

■ dupack_thresh, FACK, lost-retrans, etc.
○ Window adjustment

■ Gradually reduces cwnd across acks
■ pipe converges to ssthresh
■ Works with different congestion controls

Proportional Rate Reduction (PRR)
Entering recovery: P = ssthresh / cwnd

For every ACK received:
● pipe > ssthresh

○ Reduce cwnd every P packets delivered
○ Transmit rate = P * delivery_rate

● pipe <= ssthresh
○ Slow start to bring pipe to ssthresh

Time

Sequence offset

PRR properties

● Maintain ACK clocking

● Adjust cwnd by data delivered
○ More robust against reordering, stretched acks, loss

detection errors, esp. with SACK

● cwnd converges to ssthresh after recovery

● Bank sending opportunities during application stalls

Google Web server experiment in US
● Experiment

○ Linux 2.6 with FACK, Cubic
○ Split servers in 3 groups: Standard, Linux, PRR
○ 5 days in DCweb-usa

● PRR
○ 45% fast recoveries start with pipe <= ssthresh
○ Reduce average TCP latency by 3-10% vs. Linux

Youtube experiment in India

 Linux Standard PRR

Retransmission rate 5.0% 6.6% 5.6%

Retransmission lost 2.4% 16.4% 4.8%

Slow start after recovery 56% 1% 0%

Standard TCP may cause high lost retransmission. PRR
strikes the balance.

● Similar configuration as the Web experiment
● 3 days in DCyoutube-India
● Average video response is 2.3MB

Early retransmit (RFC 5827)
● dupack_thresh = 1 or 2 if FlightSize = 2 or 3

○ Increase fast retransmit by 13%
○ 24% are spurious due to (small) network reordering

● Mitigation
○ Stop if reordering > 3
○ Delay RTT/4 before early retransmit
○ Reduce spurious retransmission rate to 6%

Percentile Linux ER w/ mitigation Improvement

10th 319 ms 301 ms -5.6%

50th 1084 ms 997 ms -8.0%

90th 4223 ms 4084 ms -3.3%

TCP latency of all responses except ones that has < 2 packets or do not experience
losses

Conclusion
● Packet losses significantly increase Web latency

● PRR is a new TCP fast recovery algorithm
○ Recovers quickly and smoothly
○ Adopted by Linux upstream :-)
○ IETF RFC in progress

● Early retransmit (ER)
○ Useful but needs to mitigate reordering
○ Both PRR and ER are being deployed on all Google

servers

● Ongoing efforts
○ Timeout recovery, mobile TCP, TCP Fast Open,

TCP/video

PRR full algorithm

Algorithm:
if (pipe > ssthresh) // PRR.
 sndcnt = CEIL(prr_delivered * ssthresh / RecoverFS) - prr_out
else // Slow start.
 ss_limit = max(prr delivered − prr out, DeliveredData) + 1
 sndcnt = MIN(ssthresh - pipe, ss_limit)
On any data transmission or retransmission:
prr_out += (data sent)

Start of recovery:
ssthresh = CongCtrlAlg() // Target cwnd after recovery.
RecoverFS = snd.nxt - snd.una // FlightSize.
prr_delivered = prr_out = 0 // Accounting.

On each ACK in recovery, compute:
// DeliveredData: #pkts newly delivered to receiver.
DeliveredData = delta(snd.una) + delta(SACKd)
// Total pkts delivered in recovery.
prr_delivered += DeliveredData
pipe = RFC 3517 pipe algorithm

http://tools.ietf.org/html/rfc3517

