Why do standards matter?

The beauty about standards is that there are more than one to choose from....

How many engineers does it take to plug a laptop into a socket?

Based on a true story...

1st Attempt

Laptop plug

Wrong shape

Hotel room socket

2nd Attempt

Laptop plug

"multi-protocol" socket

No ground

3rd Attempt

missing

Laptop plug

"multi-protocol" socket

4th Attempt

Laptop plug

"multi-protocol" socket

5th Attempt

Laptop plug

"multi-protocol" socket

6th Attempt

Victory!

Laptop plug

"multi-protocol" socket v2.0

LET'S NOT DO THAT AGAIN...

Taking stock from the Softwire Interim meeting

Charting the "stateless" problem space

Don't say stateless...

3 characteristics

- A. Per-flow NAT binding on CPE vs CGN
- B. Per-subscriber mapping
 - 1 Hub & Spokes, on PRR (static or learned)
 - 2 Hub & Spokes, on PRR (derived from address mapping rules)
 - 3 Mesh, on CPE (derived from address mapping rules)
- C. Translation vs Encapsulation

A) per-flow NAT bindings

- On CPE
- Do not over-optimize port allocation mechanisms
 - → If you need flexibility on port distribution, use a CGN

B1) per-subscriber state on **PRR** (static or learned)

- High level:
 - Scattered IPv4 address space
 - Do not overload CPE with a large number of mapping rules
 - Hub & spoke model
- No use of algorithmic mapping rules
 - neither on CPE nor on PRR
- Per user state on PRR
- Derivative of DS-Lite/4over6 using DHCP or PCP port distribution

B2) per-subscriber mappings on **PRR** (derived from address mapping)

Same as B1), but without per-user state

 Use address & port mapping algorithmic rules as "forwarding function" on PRR

B3) per-subscriber mappings on **CPE** (derived from address mapping)

- Mesh model
- Use of provisioning and forwarding algorithmic rules on CPE
- Consensus to converge toward a unified address
 & port mapping algorithm
 - → Can the unified address & port mapping algorithm be specified to include B2 case?
 - No rules on CPE:
 send all traffic to AFTR tunnel endpoint

C) Translate vs Encap

- Technically, mostly the same
 - Minor differences: overhead vs loss of information

- Operational perspective
 - **Discussion** on what is easier to do for on-path processing (QoS/ACL/...):
 - Look at IPv6-translated headers in middle points
 - Look at encapsulated IPv4 headers in middle points
 - Look at decapsulated IPv4 headers in end points only

Way Forward

Way Forward, part 1: Way Forward, part 1:

- Design team to propose a unified address & port
 - Design team to propose a unified address & port mapping algorithm
 - Target: PS document
 - Applicable to both H&S or Mesh and Encapsulation or Translate
- Define unified DHCPv6 options for the above
 - Define unified DHCPv6 options for the above
 - Target: PS document
 - Applicable to both H&S or Mesh and Encapsulation or

Way Forward, part 2 Way Forward, part 2

- One or multiple approaches?
 - Mpace om Helphole applied aches?
 - What to implement on

CPEs

7

- (Miles te action publishe that him alle the same status?

Since the Interim

- Formed MAP design team (chaired by Ole)
 - 2 drafts: MAPing & DHCP option

Lots of discussions

- − SD-NAT ___ -U,...)
- SD-NAT